1
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Neighborhood deprivation, racial segregation and associations with cancer risk and outcomes across the cancer-control continuum. Mol Psychiatry 2023; 28:1494-1501. [PMID: 36869227 DOI: 10.1038/s41380-023-02006-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
The racial/ethnic disparities in cancer incidence and outcome are partially due to the inequities in neighborhood advantage. Mounting evidences supported a link between neighborhood deprivation and cancer outcomes including higher mortality. In this review, we discuss some of the findings related to work on area-level neighborhood variables and cancer outcomes, and the potential biological and built/natural environmental mechanisms that might explain this link. Studies have also shown that residents of deprived neighborhoods or of racially or economically segregated neighborhoods have worse health outcomes than residents of more affluent neighborhoods and/or less racially or economically segregated neighborhoods, even after adjusting for the individual-level socioeconomic status. To date, little research has been conducted investigating the biological mediators that may play roles in the associations of neighborhood deprivation and segregation with cancer outcomes. The psychophysiological stress induced by neighborhood disadvantage among people living in these neighborhoods could be a potential underlying biological mechanism. We examined a number of chronic stress-related pathways that may potentially mediate the relationship between area-level neighborhood factors and cancer outcomes, including higher allostatic load, stress hormones, altered epigenome and telomere maintenance and biological aging. In conclusion, the extant evidence supports the notion that neighborhood deprivation and racial segregation have unfavorable impacts on cancer. Understanding how neighborhood factors influence the biological stress response has the potential to inform where and what types of resources are needed within the community to improve cancer outcomes and reduce disparities. More studies are warranted to directly assess the role of biological and social mechanisms in mediating the relationship between neighborhood factors and cancer outcomes.
Collapse
|
3
|
Teixeira MZ. Telomere and Telomerase: Biological Markers of Organic Vital Force State and Homeopathic Treatment Effectiveness. HOMEOPATHY 2021; 110:283-291. [PMID: 34000743 PMCID: PMC8575553 DOI: 10.1055/s-0041-1726008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 10/28/2022]
Abstract
BACKGROUND Philosophical-scientific correlations described in previous studies suggest that the genome can be the biological representation of the vital force, whilst the disease-promoting epigenetic alterations would be the biological representation of the chronic miasmas. In this study, we expand the functional correlation between vital force and chromosomes, describing the mechanism of action of the telomere-telomerase complex in the context of physiological balance. AIMS The aim of the work is to study the role of the telomere-telomerase complex in cell vitality, biological aging, and the health-disease process, with the goal of proposing the use of telomere length as a biomarker of the vital force state and the effectiveness of homeopathic treatment. RESULTS Similar to the vital force, telomere length and telomerase enzyme activity play an important role in maintaining cellular vitality, biological longevity, and physiological homeostasis. Telomere shortening functions as a biomarker of vital imbalance and is associated with numerous diseases and health disorders. On the other hand, health-promotion practices neutralize the pathological shortening of the telomeres, acting therapeutically in diseases or age-dependent health disorders. CONCLUSIONS As a hypothetical biomarker of the vital force state, an intra-individual analysis of the mean leukocyte telomere length before, during, and after homeopathic treatment can be used as a biomarker of therapeutic effectiveness.
Collapse
|
4
|
Bellon M, Yuan Y, Nicot C. Transcription Independent Stimulation of Telomerase Enzymatic Activity by HTLV-I Tax Through Stimulation of IKK. JOURNAL OF CANCER SCIENCES 2021; 8. [PMID: 34938859 PMCID: PMC8691565 DOI: 10.13188/2377-9292.1000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The persistence and spreading of HTLV-I infected cells relies upon their clonal expansion through cellular replication. The development of adult T cell leukemia (ATLL) occurs decades following primary infection by HTLV-I. Moreover, identical provirus integration sites have been found in samples recovered several years apart from infected individuals. These observations suggest that infected cells persist in the host for an extended period of time. To endure long term proliferation, HTLV-I pre-leukemic cells must acquire critical oncogenic events, two of which are the bypassing of apoptosis and replicative senescence. In the early stages of disease, interleukin-2 (IL-2)/IL-2R signaling likely plays a major role in combination with activation of anti-apoptotic pathways. Avoidance of replicative senescence in HTLV-I infected cells is achieved through reactivation of human telomerase (hTERT). We have previously shown that HTLV-I viral Tax transcriptionally activates the hTERT promoter. In this study we demonstrate that Tax can stimulate hTERT enzymatic activity independently of its transcriptional effects. We further show that this occurs through Tax-mediated NF-KB activating functions. Our results suggest that in ATLL cells acquire Tax-transcriptional and post-transcriptional events to elevate telomerase activity.
Collapse
Affiliation(s)
- M Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Y Yuan
- Department of Pharmacology, Baylor College of Medicine, USA
| | - C Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| |
Collapse
|
5
|
Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, Rudel R, Buren H, Morello-Frosch R. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. Environ Health 2021; 20:97. [PMID: 34454526 PMCID: PMC8403436 DOI: 10.1186/s12940-021-00778-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/29/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Environmental chemical exposures can affect telomere length, which in turn has been associated with adverse health outcomes including cancer. Firefighters are occupationally exposed to many hazardous chemicals and have higher rates of certain cancers. As a potential biomarker of effect, we assessed associations between chemical exposures and telomere length in women firefighters and office workers from San Francisco, CA. METHODS We measured serum concentrations of polyfluoroalkyl substances (PFAS), urinary metabolites of flame retardants, including organophosphate flame retardants (OPFRs), and telomere length in peripheral blood leukocytes in women firefighters (N = 84) and office workers (N = 79) who participated in the 2014-15 Women Workers Biomonitoring Collaborative. Multiple linear regression models were used to assess associations between chemical exposures and telomere length. RESULTS Regression results revealed significant positive associations between perfluorooctanoic acid (PFOA) and telomere length and perfluorooctanesulfonic acid (PFOS) and telomere length among the whole cohort. Models stratified by occupation showed stronger and more significant associations among firefighters as compared to office workers. Among firefighters in models adjusted for age, we found positive associations between telomere length and log-transformed PFOA (β (95%CI) = 0.57(0.12, 1.02)), PFOS (0.44 (0.05, 0.83)), and perfluorodecanoic acid (PFDA) (0.43 (0.02, 0.84)). Modeling PFAS as categories of exposure showed significant associations between perfluorononanoic acid (PFNA) and telomere length among firefighters. Significant associations between OPFR metabolites and telomere length were seen for bis (1,3-dichloro-2-propyl) phosphate (BDCPP) and telomere length among office workers (0.21(0.03, 0.40)) and bis (2-chloroethyl) phosphate (BCEP) and telomere length among firefighters (- 0.14(- 0.28, - 0.01)). For OPFRs, the difference in the direction of effect by occupational group may be due to the disparate detection frequencies and concentrations of exposure between the two groups and/or potential unmeasured confounding. CONCLUSION Our findings suggest positive associations between PFAS and telomere length in women workers, with larger effects seen among firefighters as compared to office workers. The OPFR metabolites BDCPP and BCEP are also associated with telomere length in firefighters and office workers. Associations between chemical exposures and telomere length reported here and by others suggest mechanisms by which these chemicals may affect carcinogenesis and other adverse health outcomes.
Collapse
Affiliation(s)
- Cassidy Clarity
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
| | - Jessica Trowbridge
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, CA, USA
| | - Roy Gerona
- Department of Obstetrics, Clinical Toxicology and Environmental Biomonitoring Lab, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Katherine Ona
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Michael McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Vincent Bessonneau
- Silent Spring Institute, Newton, MA, USA
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | | | | | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA.
- School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
6
|
Teixeira MZ. Telomere length: biological marker of cellular vitality, aging, and health-disease process. Rev Assoc Med Bras (1992) 2021; 67:173-177. [PMID: 34406239 DOI: 10.1590/1806-9282.67.02.20200655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The aging process occurs due to the decline of vital physiological functions and adaptability of the body, being influenced by genetics and lifestyle. With advances in genetics, biological aging can be calculated by telomere length. Telomeres are regions at the ends of chromosomes that play a role in the maintenance and integrity of DNA. With biological aging, telomere shortening occurs, causing cellular senescence. Several studies show that shorter telomeres are associated with acute and chronic diseases, stress, addictions, and intoxications. Even in the current COVID-19 pandemic, telomere shortening is proposed as a marker of severity in individuals infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). On the other hand, healthy lifestyle habits increase telomere length and balance of various cellular functions, preventing diseases.
Collapse
Affiliation(s)
- Marcus Zulian Teixeira
- Instituto de Psiquiatria, Hospital das Clinicas, Faculdade de Medicina - Universidade de São Paulo (SP), Brazil
| |
Collapse
|
7
|
Petrov N, Lee HS, Liskovykh M, Teulade-Fichou MP, Masumoto H, Earnshaw WC, Pommier Y, Larionov V, Kouprina N. Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget 2021; 12:1444-1456. [PMID: 34316326 PMCID: PMC8310675 DOI: 10.18632/oncotarget.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.
Collapse
Affiliation(s)
- Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR 9187-INSERM U1196 Institute Curie, Research Center, Campus University Paris-Saclay, Orsay, France
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Yang L, Li N, Wang M, Zhang YH, Yan LD, Zhou W, Yu ZQ, Peng XC, Cai J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep 2021; 46:182. [PMID: 34278503 DOI: 10.3892/or.2021.8133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC), which accounts for ~85% of all lung cancer cases, is commonly diagnosed at an advanced stage and has a high patient mortality rate. Despite the increasing availability of treatment strategies, the prognosis of patients with NSCLC remains poor, with a low 5‑year survival rate. This poor prognosis may be associated with the tumor heterogeneity of NSCLC, as well as its acquisition and intrinsic resistance to therapeutic drugs. It has been suggested that combination therapy with telomerase inhibition may be an effective strategy for the treatment of drug‑sensitive and drug‑resistant types of cancer. Telomerase is the key enzyme for cell survival, and ~90% of human cancers maintain telomeres by activating telomerase, which is driven by the upregulation of telomerase reverse transcriptase (TERT). Several mechanisms of telomerase reactivation have been described in a variety of cancer types, including TERT promoter mutation, epigenetic modifications via a TERT promoter, TERT amplification, and TERT rearrangement. The aim of the present study was to comprehensively review telomerase activity and its association with the clinical characteristics and prognosis of NSCLC, as well as analyze the potential mechanism via which TERT activates telomerase and determine its potential clinical application in NSCLC. More importantly, current treatment strategies targeting TERT in NSCLC have been summarized with the aim to promote discovery of novel strategies for the future treatment of NSCLC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yan-Hua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
9
|
Panjawatanan P, Charoenkwan P, Tantiworawit A, Strogatz D, Perry KE, Tuntiwechapikul W. Telomere shortening correlates with disease severity in hemoglobin H disease patients. Blood Cells Mol Dis 2021; 89:102563. [PMID: 33798832 DOI: 10.1016/j.bcmd.2021.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Hemoglobin H (Hb H) disease is the most significant health problem of the α-thalassemia syndromes. The Hb disease patients are categorized based on their genotype to deletional and nondeletional, with the latter genotype presents the more severe clinical symptoms. Since telomere length is an indicator of biological aging and health, we hypothesized that telomere length could reflect Hb H disease's severity. In this study, we recruited 48 deletional and 47 nondeletional Hb H disease patients, along with 109 normal controls, for telomere length assessment. The leukocyte telomere length was assessed by monochromatic multiplex real-time PCR and reported as the telomere to single-copy gene (T/S) ratio. When telomere length was adjusted for age, the analysis of covariance between the control and the two Hb H disease groups revealed no significant difference. However, the telomere shortening rate was more rapid in the nondeletional Hb H disease group than those of the control and deletional Hb H disease groups. Gender analysis found that male patients have a significantly lower T/S ratio than females in the nondeletional group but not in the control and deletional groups. In the two disease groups, the T/S ratio was not influenced by ferritin level or transfusion burden but was positively correlated with the absolute reticulocyte count.
Collapse
Affiliation(s)
- Panadeekarn Panjawatanan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Pimlak Charoenkwan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Kelly E Perry
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
10
|
Ge J, Li C, Sun H, Xin Y, Zhu S, Liu Y, Tang S, Han L, Huang Z, Wang Q. Telomere Dysfunction in Oocytes and Embryos From Obese Mice. Front Cell Dev Biol 2021; 9:617225. [PMID: 33553179 PMCID: PMC7858262 DOI: 10.3389/fcell.2021.617225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Maternal obesity impairs oocyte quality and embryo development. However, the potential molecular pathways remain to be explored. In the present study, we examined the effects of obesity on telomere status in oocytes and embryos obtained from mice fed with high-fat diet (HFD). Of note, telomere shortening was observed in both oocytes and early embryos from obese mice, as evidenced by the reduced expression of telomerase reverse transcriptase and activity of telomerase. Moreover, quantitative analysis of telomere dysfunction-induced foci (TIFs) revealed that maternal obesity induces the defective telomeres in oocytes and embryos. Meanwhile, the high frequency of aneuploidy was detected in HFD oocytes and embryos as compared to controls, accompanying with the increased incidence of apoptotic blastocysts. In conclusion, these results indicate that telomere dysfunction might be a molecular pathway mediating the effects of maternal obesity on oocyte quality and embryo development.
Collapse
Affiliation(s)
- Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hongzheng Sun
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yongan Xin
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shoubin Tang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, Rudel R, Buren H, Morello-Frosch R. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.05.20226183. [PMID: 33173912 PMCID: PMC7654908 DOI: 10.1101/2020.11.05.20226183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental chemical exposures can affect telomere length, which in turn has been associated with adverse health outcomes including cancer. Firefighters are occupationally exposed to many hazardous chemicals and have higher rates of certain cancers. As a potential marker of effect, we assessed associations between chemical exposures and telomere length in women firefighters and office workers from San Francisco, CA. METHODS We measured serum levels of polyfluoroalkyl substances (PFAS), urinary metabolites of flame retardants, including organophosphate flame retardants (OPFRs), and telomere length in peripheral blood leukocytes in women firefighters and office workers who participated in the 2014-15 Women Workers Biomonitoring Collaborative. Multiple linear regression models were used to assess associations between chemical exposures and telomere length. RESULTS Regression results revealed significant positive associations between perfluorooctanoic acid (PFOA) and telomere length and perfluorooctanesulfonic acid (PFOS) and telomere length among the whole cohort. Models stratified by occupation showed stronger and more significant associations among firefighters as compared to office workers. Among firefighters in models adjusted for age, we found positive associations between telomere length and log-transformed PFOA ( β (95%CI) = 0.57(0.12, 1.02)), PFOS (0.44 (0.05, 0.83)), and perfluorodecanoic acid (PFDA) (0.43 (0.02, 0.84)). Modeling PFAS as categories of exposure showed significant associations between perfluorononanoic acid (PFNA) and telomere length among firefighters. Significant associations between OPFR metabolites and telomere length were seen for bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and telomere length among office workers (0.21(0.03, 0.40)) and bis(2-chloroethyl) phosphate (BCEP) and telomere length among firefighters (-0.14(-0.28, -0.01)). For OPFRs, the difference in the direction of effect by occupational group may be due to the disparate detection frequencies and levels of exposure between the two groups and/or potential unmeasured confounding. CONCLUSION Our findings suggest positive associations between PFAS and telomere length in women workers, with larger effects seen among firefighters as compared to office workers. The OPFR metabolites BDCPP and BCEP are also associated with telomere length in firefighters and office workers. Associations between chemical exposures and telomere length reported here and by others suggest mechanisms by which these chemicals may affect carcinogenesis and other adverse health outcomes.
Collapse
|
12
|
in der Stroth L, Tharehalli U, Günes C, Lechel A. Telomeres and Telomerase in the Development of Liver Cancer. Cancers (Basel) 2020; 12:E2048. [PMID: 32722302 PMCID: PMC7464754 DOI: 10.3390/cancers12082048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common cancer types worldwide and the fourth leading cause of cancer-related death. Liver carcinoma is distinguished by a high heterogeneity in pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequent in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which represent the two most common types of liver tumors. Both tumor types are characterized by telomere shortening and reactivation of telomerase during carcinogenesis. Continuous cell proliferation, e.g., by oncogenic mutations, can cause extensive telomere shortening in the absence of sufficient telomerase activity, leading to dysfunctional telomeres and genome instability by breakage-fusion-bridge cycles, which induce senescence or apoptosis as a tumor suppressor mechanism. Telomerase reactivation is required to stabilize telomere functionality and for tumor cell survival, representing a genetic risk factor for the development of liver cirrhosis and liver carcinoma. Therefore, telomeres and telomerase could be useful targets in hepatocarcinogenesis. Here, we review similarities and differences between HCC and iCCA in telomere biology.
Collapse
Affiliation(s)
- Lena in der Stroth
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Cagatay Günes
- Department of Urology, University Hospital Ulm, 89081 Ulm, Germany;
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| |
Collapse
|
13
|
A Novel Tissue and Stem Cell Specific TERF1 Splice Variant Is Downregulated in Tumour Cells. Int J Mol Sci 2019; 21:ijms21010085. [PMID: 31877678 PMCID: PMC6981981 DOI: 10.3390/ijms21010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, we describe the identification of a novel splice variant of TERF1/PIN2, one of the main components of the telomeric shelterin complex. This new splice variant is identical to TERF1, apart from a 30 amino acid internal insertion near to the C-terminus of TERF1. Based on genome comparison analyses and RNA expression data, we show that this splice variant is conserved among hominidae but absent from all other species. RNA expression and histological analyses show specific expression in human spermatogonial and hematopoietic stem cells (HSCs), while all other analyzed tissues lack the expression of this TERF1-isoform, hence the name TERF1-tsi (TERF1-tissue-specific-isoform). In addition, we could not detect any expression in primary human cells and established cancer cell lines. Immunohistochemistry results involving two new rabbit polyclonal antibodies, generated against TERF1-tsi specific peptides, indicate nuclear localization of TERF1-tsi in a subset of spermatogonial stem cells. In line with this observation, immunofluorescence analyzes in various cell lines consistently revealed that ectopic TERF1-tsi localizes to the cell nucleus, mainly but not exclusively at telomeres. In a first attempt to evaluate the impact of TERF1-tsi in the testis, we have tested its expression in normal testis samples versus matched tumor samples from the same patients. Both RT-PCR and IHC show a specific downregulation of TERF1-tsi in tumor samples while the expression of TERF1 and PIN2 remains unchanged.
Collapse
|
14
|
Han J, Chen M, Fang Q, Zhang Y, Wang Y, Esma J, Qiao H. Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:650-660. [PMID: 31698312 PMCID: PMC6906861 DOI: 10.1016/j.omtn.2019.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignant tumor of endocrine systems. Chromosomal instability (CIN) is crucial to the clinical prognoses of tumor patients. DNA methylation plays an important role in the regulation of gene expression and CIN. Based on PTC samples from The Cancer Genome Atlas database, we used multiple regression analyses to identify methylation patterns of CpG sites with the strongest correlation with gene expression. A total of 4,997 genes were obtained through combining the CpG sites, which were represented as featured DNA methylation patterns. In order to identify CIN-related epigenetic markers of PTC survival, we developed a method to characterize CIN based on DNA methylation patterns of genes using the Student’s t statistics. We found that 1,239 genes were highly associated with CIN. With the use of the log-rank test, univariate Cox regression analyses, and the Kaplan-Meier method, DNA methylation patterns of UBAC2 and ELOVL2, highly correlated with CIN, provided potential prognostic values for PTC. The higher these two genes, risk scores were correlated with worse PTC patient prognoses. Moreover, the ELOVL2 risk score was significantly different in the four stages of PTC, suggesting that it was related to the progress of PTC. The DNA methylation pattern associated with CIN may therefore be a good predictor of PTC survival.
Collapse
Affiliation(s)
- Jun Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Meijun Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qingxiao Fang
- Surgical Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yanqing Zhang
- Hematological Department, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Jamaspishvili Esma
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
15
|
Günes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol 2019; 15:386-393. [PMID: 29599449 DOI: 10.1038/s41585-018-0001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity, one of the cancer hallmarks. Over 90% of human urothelial carcinoma of the bladder (UCB) tumours are positive for telomerase activity. Telomerase activation can occur through several mechanisms. Mutations in the core promoter region of the human telomerase reverse transcriptase gene (TERT) cause telomerase reactivation in 60-80% of UCBs, whereas the prevalence of these mutations is lower in urothelial cancers of other origins. TERT promoter mutations are the most frequent genetic alteration across all stages of UCB, indicating a strong selection pressure during neoplastic transformation. TERT promoter mutations could arise during regeneration of normal urothelium and, owing to consequential telomerase reactivation, might be the basis of UCB initiation, which represents a new model of urothelial cancer origination. In the future, TERT promoter mutations and telomerase activity might have diagnostic and therapeutic applications in UCB.
Collapse
Affiliation(s)
- Cagatay Günes
- Department of Urology, University of Ulm, Ulm, Germany.
| | - Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Jennifer Southgate
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | |
Collapse
|
16
|
Kaewtunjai N, Wongpoomchai R, Imsumran A, Pompimon W, Athipornchai A, Suksamrarn A, Lee TR, Tuntiwechapikul W. Ginger Extract Promotes Telomere Shortening and Cellular Senescence in A549 Lung Cancer Cells. ACS OMEGA 2018; 3:18572-18581. [PMID: 32010796 PMCID: PMC6988994 DOI: 10.1021/acsomega.8b02853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 05/07/2023]
Abstract
Replicative senescence, which is caused by telomere shortening from the end replication problem, is considered one of the tumor-suppressor mechanisms in eukaryotes. However, most cancers escape this replicative senescence by reactivating telomerase, an enzyme that extends the 3'-ends of the telomeres. Previously, we reported the telomerase inhibitory effect of a crude Zingiber officinale extract (ZOE), which suppressed hTERT expression, leading to a reduction in hTERT protein and telomerase activity in A549 lung cancer cells. In the present study, we found that ZOE-induced telomere shortening and cellular senescence during the period of 60 days when these A549 cells were treated with subcytotoxic doses of ZOE. Using assay-guided fractionation and gas chromatography/mass spectrometry analysis, we found that the major compounds in the active subfractions were paradols and shogaols of various chain lengths. The results from studies of pure 6-paradol and 6-shogaol confirmed that these two compounds could suppress hTERT expression as well as telomerase activity in A549 cells. These results suggest that these paradols and shogaols are likely the active compounds in ZOE that suppress hTERT expression and telomerase activity in these cells. Furthermore, ZOE was found to be nontoxic and had an anticlastogenic effect against diethylnitrosamine-induced liver micronucleus formation in rats. These findings suggest that ginger extract can potentially be useful in dietary cancer prevention.
Collapse
Affiliation(s)
- Navakoon Kaewtunjai
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Rawiwan Wongpoomchai
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Arisa Imsumran
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - Wilart Pompimon
- Laboratory
of Natural Products, Department of Chemistry, Faculty of Science and
Center of Innovation in Chemistry, Lampang
Rajabhat University, Lampang 52100, Thailand
| | - Anan Athipornchai
- Department
of Chemistry, Center of Excellence for Innovation in Chemistry, Burapha University, Chon Buri 20131, Thailand
| | - Apichart Suksamrarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200, Thailand
- E-mail: . Phone: +66-53-945323, +66-53-934-438. Fax: +66-53-894031 (W.T.)
| |
Collapse
|
17
|
Lee HS, Carmena M, Liskovykh M, Peat E, Kim JH, Oshimura M, Masumoto H, Teulade-Fichou MP, Pommier Y, Earnshaw WC, Larionov V, Kouprina N. Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Res 2018; 78:6282-6296. [PMID: 30166419 PMCID: PMC6214708 DOI: 10.1158/0008-5472.can-18-0894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
The targeting of telomerase and telomere maintenance mechanisms represents a promising therapeutic approach for various types of cancer. In this work, we designed a new protocol to screen for and rank the efficacy of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular human artificial chromosome (HAC, lacking telomeres) and a linear HAC (containing telomeres) marked with the EGFP transgene; compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. Our assay allowed quantification of chromosome loss by routine flow cytometry. We applied this dual-HAC assay to rank a set of known and newly developed compounds, including G-quadruplex (G4) ligands. Among the latter group, two compounds, Cu-ttpy and Pt-ttpy, induced a high rate of linear HAC loss with no significant effect on the mitotic stability of a circular HAC. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges in late mitosis and cytokinesis as well as UFB (ultrafine bridges). Chromosome loss after Pt-ttpy or Cu-ttpy treatment correlated with the induction of telomere-associated DNA damage. Overall, this platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.Significance: An assay provides a unique opportunity to screen thousands of chemical compounds for their ability to inactivate replication of telomeric ends in cancer cells and holds potential to lay the foundation for the discovery of new treatments for cancer. Cancer Res; 78(21); 6282-96. ©2018 AACR.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Emma Peat
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mitsuo Oshimura
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori, Japan
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Marie-Paule Teulade-Fichou
- Chemistry Modelling and Imaging for Biology, CNRS UMR 9187- INSERM U1196 Institute Curie, Research Center, Campus University Paris-Sud, Orsay, France
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| |
Collapse
|
18
|
Association of MNS16A VNTR and hTERT rs2736098: G>A polymorphisms with susceptibility to diffuse large B-cell lymphoma. TUMORI JOURNAL 2018; 104:165-171. [PMID: 28967095 DOI: 10.5301/tj.5000653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Genetic studies of diffuse large B-cell lymphoma (DLBCL) may serve to clarify disease pathogenesis and mark at-risk populations. Evidence of long telomeres and high telomerase activity have been demonstrated in DLBCL. We aimed to examine human telomerase gene ( hTERT) MNS16A variable number of tandem repeats and hTERT rs2736098: G>A polymorphisms in relation to DLBCL susceptibility. METHODS In a case control study, 71 patients with DLBCL and 156 controls were genotyped for MNS16A using polymerase chain reaction and hTERT rs2736098: G>A using polymerase chain reaction restriction fragment length polymorphism. RESULTS In both codominant and recessive models, there was a significant difference in the distribution of MNS16A genotypes between patients with DLBCL and controls (p = 0.047 and p = 0.018, respectively). In both models, carriers of S/S genotype were at higher risk to develop DLBCL (odds ratio [OR] 2.51, 95% confidence interval [CI] 1.19-5.29 and OR 2.19, 95% CI 1.15-4.17, respectively). In the log-additive model, each copy of S allele significantly increased DLBCL risk in an additive form (p = 0.018, OR 1.57, 95% CI 1.08-2.29). The frequency distribution of MNS16A S alleles was significantly higher in patients than controls (p = 0.012). Carriers of S alleles were at higher risk to develop DLBCL than carriers of L alleles (OR 1.67, 95% CI 1.12-2.49). hTERT rs2736098: G>A genotype distribution did not differ significantly between patients with DLBCL and controls. CONCLUSIONS MNS16A genetic variations are associated with DLBCL susceptibility.
Collapse
|
19
|
Gaur P, Hunt CR, Pandita TK. Emerging therapeutic targets in esophageal adenocarcinoma. Oncotarget 2018; 7:48644-48655. [PMID: 27102294 PMCID: PMC5217045 DOI: 10.18632/oncotarget.8777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/10/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of gastro-esophageal disease and associated rate of esophageal adenocarcinoma (EAC) is rising at an exponential rate in the United States. However, research targeting EAC is lagging behind, and much research is needed in the field to identify ways to diagnose EAC early as well as to improve the rate of pathologic complete response (pCR) to systemic therapies. Esophagectomy with subsequent reconstruction is known to be a morbid procedure that significantly impacts a patient's quality of life. If indeed the pCR rate of patients can be improved and those patients destined to be pCR can be identified ahead of time, they may be able to avoid this life-altering procedure. While cancer-specific biological pathways have been thoroughly investigated in other solid malignancies, much remains unexplored in EAC. In this review, we will highlight some of the latest research in the field in regards with EAC, along with new therapeutic targets that are currently being explored. After reviewing conventional treatment and current changes in medical therapy for EAC, we will focus on unchartered grounds such as cancer stem cells, genetics and epigenetics, immunotherapy, and chemoradio-resistant pathways as we simultaneously propose some investigational possibilities that could be applicable to EAC.
Collapse
Affiliation(s)
- Puja Gaur
- Department of General Surgery, Division of Thoracic Surgery, The Houston Methodist Research Institute, Houston, TX, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
20
|
Zhang P, Li Z, Wang N, Duan G, Wang W, Feng Y, Zhao Y, Wang L, Zhu H, Zhang Q, Liu X, Wu W, Wu Y, Yao W, Wang J, Wu Y, Feng F. Coal tar pitch extract could induce chromosomal instability of human bronchial epithelial cells mediated by spindle checkpoint-related proteins. Oncotarget 2017; 8:56506-56517. [PMID: 28915607 PMCID: PMC5593578 DOI: 10.18632/oncotarget.17025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/21/2017] [Indexed: 11/25/2022] Open
Abstract
Coal tar pitch (CTP) is a byproduct of coal tar distillation. The workers working with coal tar or in aluminum smelters, potrooms and carbon plants have the opportunities of exposing to coal tar pitch volatiles. Coal tar pitches from which polycyclic aromatic hydrocarbons (PAHs) originate have been shown to exhibit lung carcinogenicity in humans. Chromosomal instability (CIN) is a mechanism in carcinogenesis, however, whether CIN is involved in coal tar pitch-induced lung cancer remains elusive. In this present study, human bronchial epithelial cells (BEAS-2B) were first exposed to coal tar pitch extracts (CTPE) to induce a malignant transformation model. Then, the occurrence of severe chromosomal changes detected using G band, R band and multiplex fluorescence in situ hybridization (M-FISH) staining were examined. It was shown that more clones of transformed BEAS-2B cells at passage 30 following stimulation with CTPE were formed in the soft agar compared with the vehicle control. Moreover, the expression of the spindle checkpoint-related proteins, mitotic arrest defective 2 (Mad2), budding uninhibited in benzimidazole 1 (Bub1), and anaphase-promoting complex (APC), indicators of abnormal chromosomes and carcinogenesis, reduced in CTPE-treated BEAS-2B cells at Passage 30 compared with the vehicle control using real-time PCR and immunohistochemistry. In summary, exposure of BEAS-2B cells to CTPE may induce chromosomal instability through spindle checkpoint-related proteins.
Collapse
Affiliation(s)
- Peng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Zhitao Li
- Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanming Feng
- Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yong Zhao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hansong Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaozhuan Liu
- Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Wang
- Department of Pulmonary, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiming Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
22
|
Expression of Telomere Repeat Binding Factor 1 and TRF2 in Prostate Cancer and Correlation with Clinical Parameters. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9764752. [PMID: 28808664 PMCID: PMC5541806 DOI: 10.1155/2017/9764752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
Abstract
Objective The objective of this study was to investigate the expression of telomere repeat binding factor 1 (TRF1) and TRF2 in prostate cancer and their relationships with clinicopathological features. Methods In total 50 prostate cancer tissues and paired benign prostate hyperplasia tissues were analyzed. The telomere-binding proteins TRF1 and TRF2 were measured using immunohistochemical method. Correlation analyses were used to evaluate the association between immunohistochemical score and clinical parameters. Results The expression of TRF1 was significantly higher in prostate cancer tissue than in benign prostate hyperplasia tissue (χ2 = 62.69, P < 0.01). Elevated levels of TRF2 were observed in both prostate cancer and benign prostate hyperplasia tissue (χ2 = 1.13, P = 0.76). TRF1 expression was significantly positively correlated with surgical capsular invasion (Spearman's r = 0.43, P = 0.002), seminal vesicle invasion (Spearman's r = 0.35, P = 0.01), lymph nodes metastases (Spearman's r = 0.41, P = 0.003), total prostate specific antigen (r = 0.61, P < 0.05), and Gleason score (r = 0.47, P = 0.01). However, there were no significant statistical differences between prostate volume (r = 0.06, P = 0.75) and age (r = 0.14, P = 0.09). Conclusion Both TRF1 and TRF2 were overexpressed in prostate cancer. There was no specificity of TRF2 in prostate cancer, while TRF1 may be associated with prostate cancer progression.
Collapse
|
23
|
The hypomorphic TERT A1062T variant is associated with increased treatment-related toxicity in acute myeloid leukemia. Ann Hematol 2017; 96:895-904. [PMID: 28331964 DOI: 10.1007/s00277-017-2967-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Hypomorphic germline variants in TERT, the gene encoding the reverse transcriptase component of the human telomerase complex, occur with a frequency of 3-5% in acute myeloid leukemia. We analyzed the clinical and prognostic impact of the most common TERT A1062T variant in younger patients with acute myeloid leukemia intensively treated within two prospective multicenter trials. Four hundred and twenty patients (age 17-60 years) were analyzed for the TERT A1062T variant by direct sequencing. Fifteen patients (3.6%) carried the TERT A1062T variant. Patients with the TERT A1062T variant had a trend towards less favorable and more intermediate 2/adverse karyotypes/genotypes according to the European Leukemia Net classification. In univariate and multivariate analysis, patients with the TERT A1062T variant had a significantly inferior overall survival compared to wild-type patients (6-year overall survival 20 vs. 41%, p = 0.005). Patients with the TERT A1062T variant showed a high rate of treatment-related mortality: 5/15 (33%) died during induction therapy or in complete remission as compared to 62/405 (15%) of the wild-type patients. In patients with the TERT variant, 14/15 (93%) suffered from non-hematological/non-infectious grade 3/4 adverse events (mostly hepatic and/or mucosal) as compared to 216/405 (53%) wild-type patients (p = 0.006). In multivariate analysis, the TERT A1062T variant was an independent risk factor predicting for adverse events during induction chemotherapy. In conclusion, the TERT A1062T variant is an independent negative prognostic factor in younger patients with acute myeloid leukemia and seems to predispose those patients to treatment-related toxicity.
Collapse
|
24
|
Han MH, Lee DS, Jeong JW, Hong SH, Choi IW, Cha HJ, Kim S, Kim HS, Park C, Kim GY, Moon SK, Kim WJ, Hyun Choi Y. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev Res 2016; 78:37-48. [PMID: 27654302 DOI: 10.1002/ddr.21367] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Preclinical Research Fucoidan, a sulfated polysaccharide, is a compound found in various species of seaweed that has anti-viral, anti-bacterial, anti-oxidant, anti-inflammatory, and immunomodulatory activities; however, the underlying relationship between apoptosis and anti-telomerase activity has not been investigated. Here, we report that fucoidan-induced apoptosis in 5637 human bladder cancer cells was associated with an increase in the Bax/Bcl-2 ratio, the dissipation of the mitochondrial membrane potential (MMP, Δψm), and cytosolic release of cytochrome c from the mitochondria. Under the same experimental conditions, fucoidan-treatment decreased hTERT (human telomerase reverse transcriptase) expression and the transcription factors, c-myc and Sp1. This was accompanied by decreased telomerase activity. Fucoidan-treatment also suppressed activation of the PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling enhanced fucoidan-induced apoptosis and anti-telomerase activity. Meanwhile, fucoidan treatment increased the generation of intracellular ROS, whereas the over-elimination of ROS by N-acetylcysteine, an anti-oxidant, attenuated fucoidan-induced apoptosis, inhibition of hTERT, c-myc, and Sp1 expression, and reversed fucoidan-induced inactivation of the PI3K/Akt signaling pathway. Collectively, these data indicate that the induction of apoptosis and the inhibition of telomerase activity by fucoidan are mediated via ROS-dependent inactivation of the PI3K/Akt pathway. Drug Dev Res 78 : 37-48, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Min Ho Han
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Dae-Sung Lee
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea
| | - Jin-Woo Jeong
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 608-756, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 602-702, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan, 614-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Sung-Kwon Moon
- School of Food Science and Technology, Chung-Ang University, Ansung, 456-756, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine and Institute for Tumor Research, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yung Hyun Choi
- Natural Products Research Team, Marine Biodiversity Institute of Korea, Seocheon, 325-902, Republic of Korea.,Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, 614-714, Republic of Korea.,Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 614-052, Republic of Korea
| |
Collapse
|
25
|
Boccardi V, Marano L, Paolisso G. Letter to "Statin Use Is Associated With Reduced Risk of Colorectal Cancer in Patients With Inflammatory Bowel Diseases". Clin Gastroenterol Hepatol 2016; 14:1365. [PMID: 27001268 DOI: 10.1016/j.cgh.2016.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Luigi Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, Spoleto, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
26
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Telomerase: The Devil Inside. Genes (Basel) 2016; 7:genes7080043. [PMID: 27483324 PMCID: PMC4999831 DOI: 10.3390/genes7080043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies.
Collapse
|