1
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
2
|
Experimental study and modeling of in vitro agrochemicals release from nanoporous anodic alumina. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Salerno M, Shayganpour A, Salis B, Dante S. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:74-81. [PMID: 28144566 PMCID: PMC5238693 DOI: 10.3762/bjnano.8.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/12/2016] [Indexed: 05/24/2023]
Abstract
Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained tAPA-Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA-Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS) biosensors on living cells. In the future, these tAPA-Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.
Collapse
Affiliation(s)
- Marco Salerno
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Amirreza Shayganpour
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Department of Bioengineering and Robotics, University of Genova, viale Causa 13, I-16145 Genova, Italy
| | - Barbara Salis
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Department of Bioengineering and Robotics, University of Genova, viale Causa 13, I-16145 Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
4
|
Ribes À, Xifré -Pérez E, Aznar E, Sancenón F, Pardo T, Marsal LF, Martínez-Máñez R. Molecular gated nanoporous anodic alumina for the detection of cocaine. Sci Rep 2016; 6:38649. [PMID: 27924950 PMCID: PMC5141502 DOI: 10.1038/srep38649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement "molecular gates" for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10-7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Elisabet Xifré -Pérez
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Teresa Pardo
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| | - Lluís F. Marsal
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007, Tarragona, Spain
| | - Ramόn Martínez-Máñez
- Instituto Interuniversitario de Investigaciόn de Reconocimiento Molecular y Desarrollo Tecnolόgico (IDM). Universitat Politècnica de València, Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicína (CIBER-BBN)
| |
Collapse
|