1
|
Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2022; 251:110461. [PMID: 35870231 DOI: 10.1016/j.vetimm.2022.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
One of the most used biospecimens in immunology are peripheral blood mononuclear cells (PBMC). PBMC are particularly useful when evaluating immunity through responses of circulating B- and T-cells, during an infection, or after a vaccination. While several reviews and research papers have been published aiming to point out critical steps when sampling, isolating, and cryopreserving human PBMC -or even analyzing any parameter before sampling that could impair the immune assays' outcomes-, there are almost no publications in swine research dealing with these topics. As it has been demonstrated, several factors, such as stress, circadian rhythmicity, or the anticoagulant used have serious negative impact, not only on the separation performance of PBMC, but also on the ulterior immune assays. The present review aims to discuss studies carried out in humans that could shed some light for swine research. When possible, publications in pigs are also discussed. The main goal of the review is to encourage swine researchers to standardize protocols to obtain, manage and preserve porcine PBMC, as well as to minimize, or at least to consider, the bias that some parameters might induce in their studies before, during and after isolating PBMC.
Collapse
|
2
|
Creative transformation of biomedical polyurethanes: from biostable tubing to biodegradable smart materials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Baust JM, Snyder KK, Van Buskirk RG, Baust JG. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells 2022; 11:cells11020278. [PMID: 35053394 PMCID: PMC8773610 DOI: 10.3390/cells11020278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Correspondence: ; Tel.: +1-(607)-687-8701
| | - Kristi K. Snyder
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
| | - Robert G. Van Buskirk
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Salian SR, Pandya RK, Laxminarayana SLK, Krishnamurthy H, Cheredath A, Tholeti P, Uppangala S, Kalthur G, Majumdar S, Schlatt S, Adiga SK. Impact of Temperature and Time Interval Prior to Immature Testicular-Tissue Organotypic Culture on Cellular Niche. Reprod Sci 2020; 28:2161-2173. [PMID: 33319342 PMCID: PMC8289760 DOI: 10.1007/s43032-020-00396-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Cryopreservation of immature-testicular-tissue (ITT) prior to gonadotoxic treatment, while experimental, is the only recommended option for fertility preservation in prepubertal boys. The handling and manipulation of ITT before cryopreservation could influence the functionality of cells during fertility restoration, which this study explored by evaluating cellular niche and quality of mouse ITT subjected to various temperatures and time durations in vitro. ITT from 6-day-old mice were handled at ultraprofound-hypothermic, profound-hypothermic, and mild-warm-ischemic temperatures for varying time periods prior to 14-day organotypic culture. Viability, functionality, synaptonemal complex and chromatin remodeling markers were assessed. Results have shown that cell viability, testosterone level, and in vitro proliferation ability did not change when ITT were held at ultraprofound-hypothermic-temperature up to 24 h, whereas cell viability was significantly reduced (P < 0.01), when held at profound-hypothermic-temperature for 24 h before culture. Further, cell viability and testosterone levels in cultured cells from profound-hypothermic group were comparable to corresponding ultraprofound-hypothermic group but with moderate reduction in postmeiotic cells (P < 0.01). In conclusion, holding ITT at ultraprofound-hypothermic-temperature is most suitable for organotypic culture, whereas short-term exposure at profound-hypothermic-temperature may compromise postmeiotic germ cell yield post in vitro culture. This data, albeit in mouse model, will have immense value in human prepubertal fertility restoration research.
Collapse
Affiliation(s)
- Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Riddhi Kirit Pandya
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | | | - Aswathi Cheredath
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Prathima Tholeti
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Subeer Majumdar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Albert-Schweitzer Campus 11, 48149, Münster, Germany
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
5
|
Wahyuningsih KA, Karina K, Rosadi I, Rosliana I, Subroto WR. Effect of ascorbic acid on morphology of post-thawed human adipose-derived stem cells. Stem Cell Investig 2020; 7:16. [PMID: 33110914 DOI: 10.21037/sci-2020-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Background Ascorbic acid-2-phosphate has been reported to play a role in cell division and to suppress aging of cell. However, post-thawed cell morphology on various concentration of ascorbic acid is still unclear. In this study, we aimed to observe the morphology of post-thawed adipose-derived stem cells (ADSCs) in medium containing L-ascorbic acid-2-phosphate (LAA2P) (50 and 100 µg/mL). Methods The cells were isolated from adipose tissue. Isolated cells then cultured and cryopreserved in liquid nitrogen. We detected mRNA expression of type 1 collagen on day 5. Cell seeded in T25 flask using basal medium [Dulbecco's modified Eagle's medium (DMEM) only] as a control group, DMEM with 10% fetal bovine serum (FBS) and antibiotics as DMFA group, while DMFA with ascorbic acid (50 and 100 µg/mL) as ascorbic acid treatment group. Results The results showed that the cells cultured in DMEM only attached until 96 hours of observation while serum groups with or without ascorbic acid supplementation showed the proliferation until 240 hours of observation. The highest spread size of cell was in a serum group without ascorbic acid supplementation and the highest yield of cells showed in a group with 50 µg/mL of ascorbic acid supplementation. Reduced mRNA expression of type 1 collagen which related to aging was showed in cells cultured without ascorbic acid supplementation. Conclusions These results showed that ascorbic acid increased the cell division and suppressed the aging processes indicated by normal spread cell in size compared to cell cultured in DMFA without ascorbic acid supplementation.
Collapse
Affiliation(s)
- Komang Ardi Wahyuningsih
- Department of Histology, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia.,Klinik Hayandra, Yayasan Hayandra Peduli, Jakarta, Indonesia.,Hayandra Lab, Yayasan Hayandra Peduli, Jakarta, Indonesia
| | - Karina Karina
- Klinik Hayandra, Yayasan Hayandra Peduli, Jakarta, Indonesia.,Hayandra Lab, Yayasan Hayandra Peduli, Jakarta, Indonesia
| | - Imam Rosadi
- Hayandra Lab, Yayasan Hayandra Peduli, Jakarta, Indonesia
| | - Iis Rosliana
- Hayandra Lab, Yayasan Hayandra Peduli, Jakarta, Indonesia
| | | |
Collapse
|
6
|
Hu Y, Mi Y, Mukherjee P, Pan Y. A new method of cryopreserving colorectal carcinoma cells for patient derived xenograft model generation. Cryobiology 2020; 96:45-49. [PMID: 32861699 DOI: 10.1016/j.cryobiol.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Patient derived xenograft (PDX) models provide an efficient way to study anti-tumor drug efficacy. In this respect, it is essential to study the optimal method needed to cryopreserve the starting cells obtained from tumor samples for PDX model generation. Cryopreservation of cells prior to xenografting is necessary for cross-verification of results obtained by xenografting and also for practical planning of experiments. In the present work, we studied the cryopreservation of colorectal carcinoma (CRC) cells isolated from patient tumor samples for generating their patient derived xenograft models. CRC therapeutics study is essential for early stage intervention and treatment of the disease. CRC cell lines do not ideally depict the molecular characteristics of patient CRC tumor samples. This necessitates the generation of CRC PDX models for drug discovery. We show that CRC cells isolated from patient tumor samples have comparable recovery, viability and growth with both conventional cryopreservation methods as well as Fibulas BioFlash Drive™. However, xenograft tumor formation was much more effective with Fibulas BioFlash Drive™ cryopreserved cells than with cells cryopreserved with conventional methods. Therefore, we put forward an effective way to cryopreserve primary cells obtained from patient tumor samples for PDX model generation in this study.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pooja Mukherjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94704, United States; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94704, United States.
| | - Ying Pan
- CITRIS and the Banatao Institute,330 Sutardja Dai Hall, University of California, Berkeley, Berkeley, CA, 94720-1764, United States.
| |
Collapse
|
7
|
Liu T, Xu D, Zhou R. A new material of cryopreserving cell samples. Cryobiology 2020; 93:70-74. [DOI: 10.1016/j.cryobiol.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
|
8
|
Advances in the slow freezing cryopreservation of microencapsulated cells. J Control Release 2018; 281:119-138. [PMID: 29782945 DOI: 10.1016/j.jconrel.2018.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Over the past few decades, the use of cell microencapsulation technology has been promoted for a wide range of applications as sustained drug delivery systems or as cells containing biosystems for regenerative medicine. However, difficulty in their preservation and storage has limited their availability to healthcare centers. Because the preservation in cryogenic temperatures poses many biological and biophysical challenges and that the technology has not been well understood, the slow cooling cryopreservation, which is the most used technique worldwide, has not given full measure of its full potential application yet. This review will discuss the different steps that should be understood and taken into account to preserve microencapsulated cells by slow freezing in a successful and simple manner. Moreover, it will review the slow freezing preservation of alginate-based microencapsulated cells and discuss some recommendations that the research community may pursue to optimize the preservation of microencapsulated cells, enabling the therapy translate from bench to the clinic.
Collapse
|
9
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
10
|
Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:1-12. [PMID: 27837550 DOI: 10.1007/978-3-319-45457-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.
Collapse
|
11
|
Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:77-98. [PMID: 27837556 DOI: 10.1007/978-3-319-45457-3_7] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
Collapse
|
12
|
Faes K, Goossens E. Short-term storage of human testicular tissue: effect of storage temperature and tissue size. Reprod Biomed Online 2017; 35:180-188. [DOI: 10.1016/j.rbmo.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
13
|
Bastidas J, Athauda G, De La Cruz G, Chan WM, Golshani R, Berrocal Y, Henao M, Lalwani A, Mannoji C, Assi M, Otero PA, Khan A, Marcillo AE, Norenberg M, Levi AD, Wood PM, Guest JD, Dietrich WD, Bartlett Bunge M, Pearse DD. Human Schwann cells exhibit long-term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia 2017; 65:1278-1301. [PMID: 28543541 DOI: 10.1002/glia.23161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Abstract
The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials.
Collapse
Affiliation(s)
- Johana Bastidas
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Gagani Athauda
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Gabriela De La Cruz
- Translational Pathology Laboratory, Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Roozbeh Golshani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Yerko Berrocal
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Martha Henao
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Anil Lalwani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Chikato Mannoji
- The Department of Orthopedic Surgery, Chiba University School of Medicine, Chiba, Japan
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - P Anthony Otero
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Aisha Khan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Alexander E Marcillo
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Michael Norenberg
- The Department of Pathology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Allan D Levi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Patrick M Wood
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - James D Guest
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurology, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, 33136
| |
Collapse
|
14
|
Beddall M, Chattopadhyay PK, Kao SF, Foulds K, Roederer M. A simple tube adapter to expedite and automate thawing of viably frozen cells. J Immunol Methods 2016; 439:74-78. [PMID: 27594593 DOI: 10.1016/j.jim.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Although cryopreserved cell specimens are used throughout biomedical research, the process for thawing samples is labor-intensive and prone to error. Here we describe a small laboratory device that couples an uncapped vial of frozen cells to a conical tube containing warm cell culture media. The entire complex is loaded directly into a centrifuge; within 5min, cells are thawed and diluted out of toxic cryopreservation medium. The recovery and viability of cells are slightly reduced compared to the common (traditional) method. However, antigen-specific T-cell function is not affected. Since no technician time is required (beyond uncapping of vials), our device allows the parallel processing of as many samples as a centrifuge can hold (up to 96, in some models). Moreover, since the samples are not thawed manually in a water bath, the problems associated with technician-to-technician differences in sample handling are minimized, as is the potential for contamination. Importantly, the elimination of substantial labor involving subjective decisions standardizes this process and can reduce variability in results from cryopreserved specimens.
Collapse
Affiliation(s)
- Margaret Beddall
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Pratip K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States.
| | - Shing-Fen Kao
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Kathy Foulds
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, United States
| |
Collapse
|
15
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Yong KW, Choi JR, Wan Safwani WKZ. Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:99-110. [PMID: 27837557 DOI: 10.1007/978-3-319-45457-3_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|