1
|
Elphick K, Frost W, Samiepour M, Kubota T, Takanashi K, Sukegawa H, Mitani S, Hirohata A. Heusler alloys for spintronic devices: review on recent development and future perspectives. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:235-271. [PMID: 33828415 PMCID: PMC8009123 DOI: 10.1080/14686996.2020.1812364] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 05/14/2023]
Abstract
Heusler alloys are theoretically predicted to become half-metals at room temperature (RT). The advantages of using these alloys are good lattice matching with major substrates, high Curie temperature above RT and intermetallic controllability for spin density of states at the Fermi energy level. The alloys are categorised into half- and full-Heusler alloys depending upon the crystalline structures, each being discussed both experimentally and theoretically. Fundamental properties of ferromagnetic Heusler alloys are described. Both structural and magnetic characterisations on an atomic scale are typically carried out in order to prove the half-metallicity at RT. Atomic ordering in the films is directly observed by X-ray diffraction and is also indirectly probed via the temperature dependence of electrical resistivity. Element specific magnetic moments and spin polarisation of the Heusler alloy films are directly measured using X-ray magnetic circular dichroism and Andreev reflection, respectively. By employing these ferromagnetic alloy films in a spintronic device, efficient spin injection into a non-magnetic material and large magnetoresistance are also discussed. Fundamental properties of antiferromagnetic Heusler alloys are then described. Both structural and magnetic characterisations on an atomic scale are shown. Atomic ordering in the Heusler alloy films is indirectly measured by the temperature dependence of electrical resistivity. Antiferromagnetic configurations are directly imaged by X-ray magnetic linear dichroism and polarised neutron reflection. The applications of the antiferromagnetic Heusler alloy films are also explained. The other non-magnetic Heusler alloys are listed. A brief summary is provided at the end of this review.
Collapse
Affiliation(s)
- Kelvin Elphick
- Department of Electronic Engineering, University of York, York, UK
| | - William Frost
- Department of Electronic Engineering, University of York, York, UK
| | - Marjan Samiepour
- Department of Electronic Engineering, University of York, York, UK
- Seagate Technology,1 Disc Drive, Springtown Industrial Estate, Londonderry, Northern Ireland
| | - Takahide Kubota
- Institute for Materials Research, Tohoku University, Sendai, Japan
- Center for Spintronics Research Network, Tohoku University, Sendai, Japan
| | - Koki Takanashi
- Institute for Materials Research, Tohoku University, Sendai, Japan
- Center for Spintronics Research Network, Tohoku University, Sendai, Japan
- Center for Science and Innovation in Spintronics, Core Research Cluster, Tohoku University, Sendai, Japan
| | - Hiroaki Sukegawa
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Seiji Mitani
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
2
|
Half-Metallicity and Magnetism of the Quaternary Heusler Compound TiZrCoIn1−xGex from the First-Principles Calculations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of doping on the electronic and magnetic properties of the quaternary Heusler alloy TiZrCoIn were investigated by first-principles calculations. Results showed that the appearance of half-metallicity and negative formation energies are associated in all of the TiZrCoIn1−xGex compounds, indicating that Ge doping at Z-site increases the stability without damaging the half-metallicity of the compounds. Formation energy gradually decreased with doping concentration, and the width of the spin-down gap increased with a change in Fermi level. TiZrCoIn0.25Ge0.75 was found to be the most stable half-metal. Its Fermi level was in the middle of the broadened gap, and a peak at the Fermi level was detected in the spin majority channel of the compound. The large gaps of the compounds were primarily dominated by the intense d-d hybridization between Ti, Zr, and Co. The substitution of In by Ge increased the number of sp valence electrons in the system and thereby enhanced RKKY exchange interaction and increased splitting. Moreover, the total spin magnetic moments of the doped compounds followed the Slater–Pauling rule of Mt = Zt − 18 and increased from 2 μB to 3 μB linearly with concentration.
Collapse
|
3
|
Tomczak JM. Thermoelectricity in correlated narrow-gap semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:183001. [PMID: 29633717 DOI: 10.1088/1361-648x/aab284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class-such as FeSi and FeSb2-display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie-Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators-such as Ce3Bi4Pt3 for which we present new results-and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.
Collapse
Affiliation(s)
- Jan M Tomczak
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|