1
|
Dave P, Anand P, Kothawala A, Srikaram P, Shastri D, Uddin A, Bhavsar J, Winer A. RNA Interference Therapeutics for Hereditary Amyloidosis: A Narrative Review of Clinical Trial Outcomes and Future Directions. Cureus 2024; 16:e62981. [PMID: 39044869 PMCID: PMC11265807 DOI: 10.7759/cureus.62981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant, life-threatening genetic disorder caused by a single-nucleotide variant in the transthyretin gene. This mutation leads to the misfolding and deposition of amyloid in various body organs. Both mutant and wild-type transthyretin contribute to the resulting polyneuropathy and cardiomyopathy, leading to significant sensorimotor disturbances and severe cardiac conditions such as heart failure and arrhythmias, thereby impacting quality of life. Despite several treatments, including orthotopic liver transplantation and transthyretin tetramer stabilizers, their limitations persisted until the introduction of RNA interference (RNAi). RNAi, a means to regulate mRNA stability and translation of targeted genes, has brought about significant changes in treatment strategies for ATTR with the introduction of patisiran in 2018. This study reviews patisiran, vutrisiran, inotersen, and eplontersen, developed for the treatment of ATTR. It provides an overview of the clinical trial outcomes, focusing mainly on quality of life, adverse reactions, and the future of RNAi-based therapies.
Collapse
Affiliation(s)
- Prashil Dave
- Internal Medicine, State University of New York Downstate Health Sciences University, New York, USA
| | - Puneet Anand
- Pediatrics, Icahn School of Medicine at Mount Sinai/Elmhurst Hospital Center, New York, USA
| | - Azra Kothawala
- Medicine, Jawaharlal Nehru Medical College, Ahmedabad, IND
| | | | - Dipsa Shastri
- Internal Medicine, East Tennessee State University (ETSU), Johnson City, USA
| | - Anwar Uddin
- Internal Medicine, State University of New York Downstate Health Sciences University, New York, USA
| | - Jill Bhavsar
- Internal Medicine, Medical College Baroda, Baroda, IND
| | - Andrew Winer
- Urology, State University of New York Downstate Health Sciences University, New York, USA
| |
Collapse
|
2
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
3
|
Jadhav V, Vaishnaw A, Fitzgerald K, Maier MA. RNA interference in the era of nucleic acid therapeutics. Nat Biotechnol 2024; 42:394-405. [PMID: 38409587 DOI: 10.1038/s41587-023-02105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/15/2023] [Indexed: 02/28/2024]
Abstract
Two decades of research on RNA interference (RNAi) have transformed a breakthrough discovery in biology into a robust platform for a new class of medicines that modulate mRNA expression. Here we provide an overview of the trajectory of small-interfering RNA (siRNA) drug development, including the first approval in 2018 of a liver-targeted siRNA interference (RNAi) therapeutic in lipid nanoparticles and subsequent approvals of five more RNAi drugs, which used metabolically stable siRNAs combined with N-acetylgalactosamine ligands for conjugate-based liver delivery. We also consider the remaining challenges in the field, such as delivery to muscle, brain and other extrahepatic organs. Today's RNAi therapeutics exhibit high specificity, potency and durability, and are transitioning from applications in rare diseases to widespread, chronic conditions.
Collapse
Affiliation(s)
- Vasant Jadhav
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA.
| | - Akshay Vaishnaw
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Kevin Fitzgerald
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Martin A Maier
- Research & Development, Alnylam Pharmaceuticals, Cambridge, MA, USA.
| |
Collapse
|
4
|
Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov 2023; 22:917-934. [PMID: 37652974 DOI: 10.1038/s41573-023-00775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.
Collapse
Affiliation(s)
- Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Barresi V, Musmeci C, Rinaldi A, Condorelli DF. Transcript-Targeted Therapy Based on RNA Interference and Antisense Oligonucleotides: Current Applications and Novel Molecular Targets. Int J Mol Sci 2022; 23:ijms23168875. [PMID: 36012138 PMCID: PMC9408055 DOI: 10.3390/ijms23168875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/28/2022] Open
Abstract
The development of novel target therapies based on the use of RNA interference (RNAi) and antisense oligonucleotides (ASOs) is growing in an exponential way, challenging the chance for the treatment of the genetic diseases and cancer by hitting selectively targeted RNA in a sequence-dependent manner. Multiple opportunities are taking shape, able to remove defective protein by silencing RNA (e.g., Inclisiran targets mRNA of protein PCSK9, permitting a longer half-life of LDL receptors in heterozygous familial hypercholesteremia), by arresting mRNA translation (i.e., Fomivirsen that binds to UL123-RNA and blocks the translation into IE2 protein in CMV-retinitis), or by reactivating modified functional protein (e.g., Eteplirsen able to restore a functional shorter dystrophin by skipping the exon 51 in Duchenne muscular dystrophy) or a not very functional protein. In this last case, the use of ASOs permits modifying the expression of specific proteins by modulating splicing of specific pre-RNAs (e.g., Nusinersen acts on the splicing of exon 7 in SMN2 mRNA normally not expressed; it is used for spinal muscular atrophy) or by downregulation of transcript levels (e.g., Inotersen acts on the transthryretin mRNA to reduce its expression; it is prescribed for the treatment of hereditary transthyretin amyloidosis) in order to restore the biochemical/physiological condition and ameliorate quality of life. In the era of precision medicine, recently, an experimental splice-modulating antisense oligonucleotide, Milasen, was designed and used to treat an 8-year-old girl affected by a rare, fatal, progressive form of neurodegenerative disease leading to death during adolescence. In this review, we summarize the main transcriptional therapeutic drugs approved to date for the treatment of genetic diseases by principal regulatory government agencies and recent clinical trials aimed at the treatment of cancer. Their mechanism of action, chemical structure, administration, and biomedical performance are predominantly discussed.
Collapse
|
6
|
Li MX, Weng JW, Ho ES, Chow SF, Tsang CK. Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury. Neural Regen Res 2022; 17:2157-2165. [PMID: 35259823 PMCID: PMC9083176 DOI: 10.4103/1673-5374.335830] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recovering itself after injury. However, the hostile extrinsic microenvironment significantly hinders axon regeneration. Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration. Particularly, substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin (mTOR) signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries. In this review, we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury. Importantly, we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog (PTEN). Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway, we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose, and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination. To specifically tackle the blood-brain barrier issue, we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology. We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
Collapse
Affiliation(s)
- Ming-Xi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Wen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric S Ho
- Department of Biology and Department of Computer Science, Lafayette College, Easton, PA, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
8
|
Du Y, Wang Y, Li Y, Emu Q, Zhu J, Lin Y. miR-214-5p Regulating Differentiation of Intramuscular Preadipocytes in Goats via Targeting KLF12. Front Genet 2022; 12:748629. [PMID: 35003206 PMCID: PMC8730364 DOI: 10.3389/fgene.2021.748629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (i.m.) is an adipose tissue that is deposited between muscle bundles. An important type of post-transcriptional regulatory factor, miRNAs, has been observed as an important regulator that can regulate gene expression and cell differentiation through specific binding with target genes, which is the pivotal way determining intramuscular fat deposition. Thus, this study intends to use RT-PCR, cell culture, liposome transfection, real-time fluorescent quantitative PCR (qPCR), dual luciferase reporter systems, and other biological methods clarifying the possible mechanisms on goat intramuscular preadipocyte differentiation that is regulated by miR-214-5p. Ultimately, our results showed that the expression level of miR-214-5p peaked at 48 h after the goat intramuscular preadipocytes were induced for adipogenesis. Furthermore, after inhibition of the expression of miR-214-5p, the accumulation of lipid droplets and adipocyte differentiation in goat intramuscular adipocytes were promoted by the way of up-regulation of the expression level of lipoprotein lipase (LPL) (p < 0.05) and peroxisome proliferator-activated receptor gamma (PPARγ) (p < 0.01) but inhibited the expression of hormone-sensitive lipase (HSL) (p < 0.01). Subsequently, our study confirmed that Krüppel-like factor 12 (KLF12) was the target gene of miR-214-5p. Inhibition of the expression of KLF12 promoted adipocyte differentiation and lipid accumulation by upregulation of the expression of LPL and CCAAT/enhancer binding protein (C/EBPα) (p < 0.01). Overall, these results indicated that miR-214-5p and its target gene KLF12 were negative regulators in progression of goat preadipocyte differentiation. Our research results provided an experimental basis for finally revealing the mechanism of miR-214-5p in adipocytes.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Quzhe Emu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
9
|
Hu Y, Liu F, Peng W, Song S, Zhang C, Meng X. Overexpression of miR-99a in hippocampus leads to impairment of reversal learning in mice. Behav Brain Res 2022; 416:113542. [PMID: 34425183 DOI: 10.1016/j.bbr.2021.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
As one of the most common human genetic disorders, Down syndrome (DS) is characterized by a mild-to-moderate cognitive disability, which mainly results from genes overexpression on chromosome 21. The expression of miR-99a, a gene harboring on chromosome 21, is increased by 50 folds in DS brain samples. This study aims to investigate the effect of miR-99a overexpression in the hippocampus on mouse behaviors and explore the underlying mechanisms. Lentivirus vectors were delivered into the hippocampus for focal miR-99a overexpression in mice. Then behaviors were observed by an open field, elevated plus maze, rotarod motor test, and Morris water maze. The genes affected by miR-99a were identified by RNA sequencing (RNA-seq) and confirmed by quantitative RT-PCR (qRT-PCR) in samples isolated from the hippocampus injected with lentivirus-GFP-miR-99a or lentivirus-GFP vectors. It was found that the expression of miR-99a with intrahippocampal delivery of lentivirus-GFP-miR-99a resulted in reversal learning impairment in mice although it had no influence on motor function and anxiety. Meanwhile, RNA-seq results showed that 92 genes including mRNAs and microRNAs were significantly regulated by miR-99a, consistent with qRT-PCR consequence. Moreover, dual-luciferase reporter assay showed that miR-99a could directly bind to the 3'-untranslated regions (3'UTR) of target genes (Clic6 and Kcnj13) with an inhibitory effect on their activity. Furthermore, we also found that miR-99a overexpression affected different biological processes by bioinformatic analyses. Our study showed that miR-99a overexpression in the hippocampus leads to cognitive impairment through regulating the expressions of various genes, which reveals a novel function of miR-99a and provides new insights into understanding the pathophysiologic process of DS.
Collapse
Affiliation(s)
- Yue Hu
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxin Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
11
|
Bozzer S, Bo MD, Toffoli G, Macor P, Capolla S. Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model. Pharmaceutics 2021; 13:1106. [PMID: 34452067 PMCID: PMC8400075 DOI: 10.3390/pharmaceutics13081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (M.D.B.); (G.T.); (S.C.)
| |
Collapse
|
12
|
Genetic variants associated with methotrexate-induced mucositis in cancer treatment: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 161:103312. [PMID: 33794308 DOI: 10.1016/j.critrevonc.2021.103312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Methotrexate (MTX), an important chemotherapeutic agent, is often accompanied with mucositis. The occurrence and severity are unpredictable and show large interindividual variability. In this study, we review and meta-analyze previously studied genetic variants in relation to MTX-induced mucositis. We conducted a systematic search in Medline and Embase. We included genetic association studies of MTX-induced mucositis in cancer patients. A meta-analysis was conducted for single nucleotide polymorphisms (SNPs) for which at least two studies found a statistically significant association. A total of 34 SNPs were associated with mucositis in at least one study of the 57 included studies. Two of the seven SNPs included in our meta-analysis were statistically significantly associated with mucositis: MTHFR c.677C > T (recessive, grade ≥3 vs grade 0-2, OR 2.53, 95 %CI [1.48-4.32], False Discovery Rate[FDR]-corrected p-value 0.011) and MTRR c.66A > G (overdominant, grade ≥1 vs grade 0, OR 2.08, 95 %CI [1.16-3.73], FDR-corrected p-value 0.042).
Collapse
|
13
|
Kang S, Larbi D, Andrade M, Reardon S, Reh TA, Wohl SG. A Comparative Analysis of Reactive Müller Glia Gene Expression After Light Damage and microRNA-Depleted Müller Glia-Focus on microRNAs. Front Cell Dev Biol 2021; 8:620459. [PMID: 33614628 PMCID: PMC7891663 DOI: 10.3389/fcell.2020.620459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Müller glia (MG) are the predominant glia in the neural retina and become reactive after injury or in disease. microRNAs (miRNAs) are translational repressors that regulate a variety of processes during development and are required for MG function. However, no data is available about the MG miRNAs in reactive gliosis. Therefore, in this study, we aimed to profile miRNAs and mRNAs in reactive MG 7 days after light damage. Light damage was performed for 8 h at 10,000 lux; this leads to rapid neuronal loss and strong MG reactivity. miRNAs were profiled using the Nanostring platform, gene expression analysis was conducted via microarray. We compared the light damage dataset with the dataset of Dicer deleted MG in order to find similarities and differences. We found: (1) The vast majority of MG miRNAs declined in reactive MG 7 days after light damage. (2) Only four miRNAs increased after light damage, which included miR-124. (3) The top 10 genes found upregulated in reactive MG after light damage include Gfap, Serpina3n, Ednrb and Cxcl10. (4) The miRNA decrease in reactive MG 7 days after injury resembles the profile of Dicer-depleted MG after one month. (5) The comparison of both mRNA expression datasets (light damage and Dicer-cKO) showed 1,502 genes were expressed under both conditions, with Maff , Egr2, Gadd45b, and Atf3 as top upregulated candidates. (6) The DIANA-TarBase v.8 miRNA:RNA interaction tool showed that three miRNAs were found to be present in all networks, i.e., after light damage, and in the combined data set; these were miR-125b-5p, let-7b and let-7c. Taken together, results show there is an overlap of gene regulatory events that occur in reactive MG after light damage (direct damage of neurons) and miRNA-depleted MG (Dicer-cKO), two very different paradigms. This suggests that MG miRNAs play an important role in a ubiquitous MG stress response and manipulating these miRNAs could be a first step to attenuate gliosis.
Collapse
Affiliation(s)
- Seoyoung Kang
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Daniel Larbi
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Monica Andrade
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| | - Sara Reardon
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Thomas A. Reh
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| | - Stefanie G. Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, United States
| |
Collapse
|
14
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
15
|
Lee Y, Ahn EH, Ryu CS, Kim JO, An HJ, Cho SH, Kim JH, Kim YR, Lee WS, Kim NK. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp Ther Med 2020; 19:3113-3123. [PMID: 32226488 PMCID: PMC7092926 DOI: 10.3892/etm.2020.8556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential association of five miRNA machinery gene polymorphisms (DICER1 rs3742330A>G, DROSHA rs10719T>C, RAN rs14035C>T, XPO5 rs11077A>C and DGCR8 rs417309G>A) with recurrent implantation failure (RIF), a clinical condition in which good-quality embryos repeatedly fail to implant following two or more in vitro fertilization cycles, and its associated risk factors in Korean women. Therefore, the present study performed genotype analysis and assessed the frequency of these miRNA gene polymorphisms in patients diagnosed with RIF (n=119) and randomly selected controls (n=210) with at least one live birth and no history of pregnancy loss. The DROSHA rs10719T>C and RAN rs14035C>T polymorphisms were identified to be significantly associated with decreased prevalence of RIF. Additionally, the DROSHA rs10719 TC and the RAN rs14035 CT genotypes were present at significantly lower frequencies in the RIF group than in the control group (adjusted odds ratio=0.550; 95% CI, 0.339-0.893; P=0.016; and adjusted odds ratio=0.590; 95% CI, 0.363-0.958; P=0.033, respectively). Furthermore, the combined RAN rs14035 CT+TT genotype was observed to be associated with decreased RIF prevalence (adjusted odds ratio=0.616; 95% CI, 0.386-0.982; P=0.042). Genotype combination analysis for the various miRNA polymorphisms revealed that the DROSHA TC genotype exhibited a highly significant negative association with RIF prevalence when combined with the RAN CT genotype (adjusted odds ratio=0.314; 95% CI, 0.147-0.673; P=0.003; false discovery rate-adjusted P=0.023). The present study revealed an association between the DROSHA rs10719 and RAN rs14035 3'UTR polymorphisms and decreased risk of RIF in Korean women, which suggests that these gene polymorphisms could represent potential markers for predicting RIF risk.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea.,CHA Fertility Center, Seoul Station, Seoul 04637, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
16
|
D’Angelo D, Arra C, Fusco A. RPSAP52 lncRNA Inhibits p21Waf1/CIP Expression by Interacting With the RNA Binding Protein HuR. Oncol Res 2020; 28:191-201. [PMID: 31831098 PMCID: PMC7851518 DOI: 10.3727/096504019x15761465603129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs have been recently demonstrated to have an important role in fundamental biological processes, and their deregulated expression has been found in several human neoplasias. Our group has recently reported a drastic overexpression of the long noncoding RNA (lncRNA) RPSAP52 (ribosomal protein SA pseudogene 52) in pituitary adenomas. We have shown that this lncRNA increased cell proliferation by upregulating the expression of the chromatinic proteins HMGA1 and HMGA2, functioning as a competing endogenous RNA (ceRNA) through competitively binding to microRNA-15a (miR-15a), miR-15b, and miR-16. The aim of this work was to identify further mechanisms by which RPSAP52 overexpression could contribute to the development of pituitary adenomas. We investigated the involvement of RPSAP52 in the modulation of the expression of cell cycle-related genes, such as p21Waf1/CIP, whose deregulation plays a critical role in pituitary cell transformation. We report that RPSAP52, interacting with the RNA binding protein HuR (human antigen R), favors the delocalization of miR-15a, miR-15b, and miR-16 on the cyclin-dependent kinase inhibitor p21Waf1/CIP1 that, accordingly, results in downregulation in pituitary adenomas. A RNA immunoprecipitation sequencing (RIPseq) analysis performed on cells overexpressing RPSAP52 identified 40 messenger RNAs (mRNAs) enriched in Argonaute 2 (AGO2) immunoprecipitated samples. Among them, we focused on GAS8 (growth arrest-specific protein 8) gene. Consistently, GAS8 expression was downregulated in all the analyzed pituitary adenomas with respect to normal pituitary and in RPSAP52-overepressing cells, supporting the role of RPSAP52 in addressing genes involved in growth inhibition and cell cycle arrest to miRNA-induced degradation. This study unveils another RPSAP52-mediated molecular mechanism in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Daniela D’Angelo
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| | - Claudio Arra
- †Animal Facility Unit, Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | - Alfredo Fusco
- *Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore,” Consiglio Nazionale delle Ricerche (CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II,”Naples, Italy
| |
Collapse
|
17
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW, Gupta SC, Pandey MK, Challagundla KB. miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 2019; 14:180-196. [PMID: 31637848 PMCID: PMC6944109 DOI: 10.1002/1878-0261.12588] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Despite current aggressive treatment regimens, the prognosis for high-risk NB patients remains poor, with the survival of less than 40%. Amplification/stabilization of MYCN oncogene, in NB is associated with a high risk of recurrence. Thus, there is an urgent need for novel therapeutics. The deregulated expression of microRNA (miR) is reported in NB; nonetheless, its effect on MYCN regulation is poorly understood. First, we identified that miR-15a-5p, miR-15b-5p, and miR-16-5p (hereafter miR-15a, miR-15b or miR-16) were down-regulated in patient-derived xenografts (PDX) with high MYCN expression. MiR targeting sequences on MYCN mRNA were predicted using online databases such as TargetScan and miR database. The R2 database, containing 105 NB patients, showed an inverse correlation between MYCN mRNA and deleted in lymphocytic leukemia (DLEU) 2, a host gene of miR-15. Moreover, overexpression of miR-15a, miR-15b or miR-16 significantly reduced the levels of MYCN mRNA and N-Myc protein. Conversely, inhibiting miR dramatically enhanced MYCN mRNA and N-Myc protein levels, as well as increasing mRNA half-life in NB cells. By performing immunoprecipitation assays of argonaute-2 (Ago2), a core component of the RNA-induced silencing complex, we showed that miR-15a, miR-15b and miR-16 interact with MYCN mRNA. Luciferase reporter assays showed that miR-15a, miR-15b and miR-16 bind with 3'UTR of MYCN mRNA, resulting in MYCN suppression. Moreover, induced expression of miR-15a, miR-15b and miR-16 significantly reduced the proliferation, migration, and invasion of NB cells. Finally, transplanting miR-15a-, miR-15b- and miR-16-expressing NB cells into NSG mice repressed tumor formation and MYCN expression. These data suggest that miR-15a, miR-15b and miR-16 exert a tumor-suppressive function in NB by targeting MYCN. Therefore, these miRs could be considered as potential targets for NB treatment.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - C Patrick Reynolds
- Childhood Cancer Repository, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Uttar Pradesh, India
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
20
|
Huang T, Huang X, Chen W, Yin J, Shi B, Wang F, Feng W, Yao M. MicroRNA responses associated with Salmonella enterica serovar typhimurium challenge in peripheral blood: effects of miR-146a and IFN-γ in regulation of fecal bacteria shedding counts in pig. BMC Vet Res 2019; 15:195. [PMID: 31186019 PMCID: PMC6560770 DOI: 10.1186/s12917-019-1951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Background MicroRNAs are involved in a broad range of biological processes and are known to be differentially expressed in response to bacterial pathogens. Results The present study identified microRNA responses in porcine peripheral blood after inoculation with the human foodborne pathogen Salmonella enterica serovar Typhimurium strain LT2. We compared the microRNA transcriptomes of the whole blood of pigs (Duroc × Landrace × Yorkshire) at 2-days post inoculation and before Salmonella infection. The analysis identified a total of 29 differentially expressed microRNAs, most of which are implicated in Salmonella infection and immunology signaling pathways. Joint analysis of the microRNA and mRNA transcriptomes identified 24 microRNAs with binding sites that were significantly enriched in 3′ UTR of differentially expressed mRNAs. Of these microRNAs, three were differentially expressed after Salmonella challenge in peripheral blood (ssc-miR-146a-5p, ssc-miR-125a, and ssc-miR-129a-5p). Expression of 23 targets of top-ranked microRNA, ssc-miR-146a-5p, was validated by real-time PCR. The effects of miR-146a, IFN-γ, and IL-6 on the regulation of fecal bacteria shedding counts in pigs were investigated by in vivo study with a Salmonella challenge model. Conclusions The results indicated that induction of miR-146a in peripheral blood could significantly increase the fecal bacterial load, whereas IFN-γ had the reverse effect. These microRNAs can be used to identify targets for controlling porcine salmonellosis.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wang Chen
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jun Yin
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
21
|
Dalgaard LT, Carvalho E. Editorial commentary: Wanted: MicroRNAs to the aid of the diabetic foot. Trends Cardiovasc Med 2018; 29:138-140. [PMID: 30292469 DOI: 10.1016/j.tcm.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Research Institute, Little Rock, AR, United States.
| |
Collapse
|
22
|
Maurizi G, Babini L, Della Guardia L. Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology. J Cell Physiol 2018; 233:9077-9086. [PMID: 29932216 DOI: 10.1002/jcp.26523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Adipose tissue is a dynamic endocrine organ playing a pivotal role in metabolism modulation. Adipocytes differentiation requires a highly orchestrated series of changes of gene expression in precursor cells. At the same time, white mature adipocytes are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells via the liposecretion process, returning back to a non-committed status of the cells. In particular, adipose tissue microenvironment along with external signaling molecules such as adipokines, cytokines and growth factors can regulate adipocytes physiology through complex molecular networks. MicroRNAs (miRNAs), a type of non-coding RNA, acting as fine regulators of biological processes and their expression is sensible to the environment and cellular status changes. MiRNAs are thought to play a pivotal role in regulating the physiology of adipose tissue as well as in the development of obesity and associated metabolic disturbances, although the underlying mechanisms have not been identified so far. Elucidating the molecular mechanisms orchestrating adipose tissue biology is required to better characterize obesity and its associated diseases. In this respect, the review aims to analyze the microRNAs potentially involved in adipogenesis highlighting their role in the process of liposecretion, adipocyte proliferation, and adipokines secretion. The role of microRNAs in the development of obesity and obesity-associated disorders is also discussed.
Collapse
Affiliation(s)
| | - Lucia Babini
- Università Politecnica delle Marche, Ancona, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli studi di Pavia, Pavia, Italy
| |
Collapse
|
23
|
Abstract
Complex immunoprecipitation (Co-IP) is a powerful technique for precipitating an intact protein complex out of solution and cell lysates using an antibody that specifically binds to a particular protein in a large complex of proteins. Mass spectrometry (MS) is used to identify, sequence, and quantify proteins. RNA-induced silencing complexes (RISCs), Ago2 centered protein assemblies, are essential for miRNA mediated RNA decay and gene expression regulation; however, the complete list of RISCs is unknown. Here we describe methods used to combine IP and MS to identify new components of RISCs.
Collapse
|
24
|
Coenen-Stass AML, Wood MJA, Roberts TC. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med 2017; 23:989-1001. [PMID: 28988850 DOI: 10.1016/j.molmed.2017.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
Abstract
miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice. The relationship between muscle pathology and extracellular myomiR release is complex, and incompletely understood. Here, we discuss current progress leading towards the clinical utility of extracellular miRNAs as putative DMD biomarkers, and their possible contribution to muscle physiology.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Institute of Neurology, Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, Queen Square, London, WC1N 3BG, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
26
|
Koonin EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct 2017; 12:5. [PMID: 28187792 PMCID: PMC5303251 DOI: 10.1186/s13062-017-0177-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Complementarity between nucleic acid molecules is central to biological information transfer processes. Apart from the basal processes of replication, transcription and translation, complementarity is also employed by multiple defense and regulatory systems. All cellular life forms possess defense systems against viruses and mobile genetic elements, and in most of them some of the defense mechanisms involve small guide RNAs or DNAs that recognize parasite genomes and trigger their inactivation. The nucleic acid-guided defense systems include prokaryotic Argonaute (pAgo)-centered innate immunity and CRISPR-Cas adaptive immunity as well as diverse branches of RNA interference (RNAi) in eukaryotes. The archaeal pAgo machinery is the direct ancestor of eukaryotic RNAi that, however, acquired additional components, such as Dicer, and enormously diversified through multiple duplications. In contrast, eukaryotes lack any heritage of the CRISPR-Cas systems, conceivably, due to the cellular toxicity of some Cas proteins that would get activated as a result of operon disruption in eukaryotes. The adaptive immunity function in eukaryotes is taken over partly by the PIWI RNA branch of RNAi and partly by protein-based immunity. In this review, I briefly discuss the interplay between homology and analogy in the evolution of RNA- and DNA-guided immunity, and attempt to formulate some general evolutionary principles for this ancient class of defense systems. Reviewers This article was reviewed by Mikhail Gelfand and Bojan Zagrovic.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
27
|
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf) 2017; 219:346-361. [PMID: 27009502 PMCID: PMC5297868 DOI: 10.1111/apha.12681] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.
Collapse
Affiliation(s)
- S. Vienberg
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - J. Geiger
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - S. Madsen
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - L. T. Dalgaard
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
28
|
Matsuda A, Yan IK, Foye C, Parasramka M, Patel T. MicroRNAs as paracrine signaling mediators in cancers and metabolic diseases. Best Pract Res Clin Endocrinol Metab 2016; 30:577-590. [PMID: 27923452 PMCID: PMC5147504 DOI: 10.1016/j.beem.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The contribution of microRNAs to the regulation of mRNA expression during physiological and developmental processes are well-recognized. These roles are being expanded by recent observations that emphasize the capability of miRNA to participate in inter-cellular signaling and communication. Several factors support a functional role for miRNA as mediators of cell-to-cell signaling. miRNA are able to exist within the extracellular milieu or circulation, and their stability and integrity maintained through association with binding proteins or lipoproteins, or through encapsulation within cell-derived membrane vesicles. Furthermore, miRNA can retain functionality and regulate target gene expression following their uptake by recipient cells. In this overview, we review specific examples that will highlight the potential of miRNA to serve as paracrine signaling mediators in metabolic diseases and cancers. Elucidating the mechanisms involved in inter-cellular communication involving miRNA will provide new insights into disease pathogenesis and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Akiko Matsuda
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Irene K Yan
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Catherine Foye
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Mansi Parasramka
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| |
Collapse
|