1
|
Zu D, Dong Q, Chen S, Chen Y, Yao J, Zou Y, Lin J, Fang B, Wu B. miRNA-331-3p Affects the Proliferation, Metastasis, and Invasion of Osteosarcoma through SOCS1/JAK2/STAT3. JOURNAL OF ONCOLOGY 2022; 2022:6459029. [PMID: 36199788 PMCID: PMC9529391 DOI: 10.1155/2022/6459029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are regulatory small noncoding RNAs that play a key role in several types of cancer. It has been reported that miR-331-3p is involved in the development and progression of various cancers, but there are few reports regarding osteosarcoma (OS). The public GEO database was used to analyze the survival difference of miR-331-3p in OS organizations. The level of cell proliferation assay was assessed by CCK-8 and colony formation. First, transwell and wound-healing assays were used to detect the transfer and invasion ability of miR-331-3p in OS. Second, TargetScan, miRDBmiR, TarBase, and dual-luciferase reporter gene assays were used to determine SOCS1 as a targeted regulator. Third, Western blot and immunohistochemistry were used to detect the expression of protein levels. Finally, a mouse model of subcutaneously transplantable tumors is used to evaluate the proliferation of OS in vivo. The low expression of miR-331-3p was negatively correlated with the overall survival of OS patients. Overexpression of miR-331-3p significantly inhibited cell proliferation, metastasis, and invasion. Moreover, miR-331-3p affected the occurrence and development of osteosarcoma by targeting the SOCS1/JAK2/STAT3 signaling pathway. Therefore, miR-331-3p reduces the expression of SOCS1 by combining with its 3'UTR, thereby activating the JAK2/STAT3 signaling pathway to regulate the progression of OS. This provides a new theoretical basis for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dan Zu
- Central Laboratory, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Qi Dong
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Sunfang Chen
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Yongde Chen
- Central Laboratory, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Jun Yao
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Yubin Zou
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Jiawei Lin
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Bin Fang
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| | - Bing Wu
- Department of Spine Surgery, The Central Hospital, Shaoxing University, Shaoxing 312030, China
| |
Collapse
|
2
|
Lee JK, Han HS. Coronavirus disease 2019 and mRNA vaccines: what's next - miRNA? Clin Exp Pediatr 2022; 65:302-303. [PMID: 35344980 PMCID: PMC9171463 DOI: 10.3345/cep.2022.00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Joon Kee Lee
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Korea
| | - Heon-Seok Han
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Korea
- Department of Pediatrics, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
3
|
Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a Novel Biomarker in the Diagnosis of Head and Neck Cancer. Biomolecules 2021; 11:844. [PMID: 34198889 PMCID: PMC8228566 DOI: 10.3390/biom11060844] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018, and although the survival statistics for some patient groups are improving, there is still an urgent need to find a fast and reliable biomarker that allows early diagnosis. This niche can be filled by microRNA, small single-stranded non-coding RNA molecules, which are expressed in response to specific events in the body. This article presents the potential use of microRNAs in the diagnosis of HNSCC, compares the advances in this field to other diseases, especially other cancers, and discusses the detailed use of miRNA as a biomarker in profiling and predicting the treatment outcome with radiotherapy and immunotherapy. Potential problems and difficulties related to the development of this promising technology, and areas on which future research should be focused in order to overcome these difficulties, were also indicated.
Collapse
Affiliation(s)
| | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, al. Kościuszki 4, 90-419 Łódź, Poland; (J.K.); (M.M.)
| |
Collapse
|
4
|
Takashima Y, Kawaguchi A, Iwadate Y, Hondoh H, Fukai J, Kajiwara K, Hayano A, Yamanaka R. miR-101, miR-548b, miR-554, and miR-1202 are reliable prognosis predictors of the miRNAs associated with cancer immunity in primary central nervous system lymphoma. PLoS One 2020; 15:e0229577. [PMID: 32101576 PMCID: PMC7043771 DOI: 10.1371/journal.pone.0229577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) inhibit protein function by silencing the translation of target mRNAs. However, in primary central nervous system lymphoma (PCNSL), the expression and functions of miRNAs are inadequately known. Here, we examined the expression of 847 miRNAs in 40 PCNSL patients with a microarray and investigated for the miRNA predictors associated with cancer immunity-related genes such as T helper cell type 1/2 (Th-1/Th-2) and regulatory T cell (T-reg) status, and stimulatory and inhibitory checkpoint genes, for prognosis prediction in PCNSL. The aim of this study is to find promising prognosis markers based on the miRNA expression in PCNSL. We detected 334 miRNAs related to 66 cancer immunity-related genes in the microarray profiling. Variable importance measured by the random survival forest analysis and Cox proportional hazards regression model elucidated that 11 miRNAs successfully constitute the survival formulae dividing the Kaplan-Meier curve of the respective PCNSL subgroups. On the other hand, univariate analysis shortlisted 23 miRNAs for overall survival times, with four miRNAs clearly dividing the survival curves-miR-101/548b/554/1202. These miRNAs regulated Th-1/Th-2 status, T-reg cell status, and immune checkpoints. The miRNAs were also associated with gene ontology terms as Ras/MAP-kinase, ubiquitin ligase, PRC2 and acetylation, CDK, and phosphorylation, and several diseases including acquired immunodeficiency syndrome, glioma, and those related to blood and hippocampus with statistical significance. In conclusion, the results demonstrated that the four miRNAs comprising miR-101/548b/554/1202 associated with cancer immunity can be a useful prognostic marker in PCNSL and would help us understand target pathways for PCNSL treatments.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuo Iwadate
- Department of Neurosurgery, Graduate School of Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroaki Hondoh
- Departments of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Koji Kajiwara
- Department of Neurosurgery, Graduate School of Medical Sciences, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
5
|
Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 2020; 21:ijms21020649. [PMID: 31963809 PMCID: PMC7014392 DOI: 10.3390/ijms21020649] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.
Collapse
Affiliation(s)
| | | | | | - Jing Chen
- Correspondence: ; Tel.: +1-617-919-2525
| |
Collapse
|
6
|
Takashima Y, Kawaguchi A, Iwadate Y, Hondoh H, Fukai J, Kajiwara K, Hayano A, Yamanaka R. MicroRNA signature constituted of miR-30d, miR-93, and miR-181b is a promising prognostic marker in primary central nervous system lymphoma. PLoS One 2019; 14:e0210400. [PMID: 30615673 PMCID: PMC6322780 DOI: 10.1371/journal.pone.0210400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that inhibit gene function by suppressing translation of target genes. However, in primary central nervous system lymphoma (PCNSL), the biological significance of miRNAs is largely unknown, although some miRNAs are known to be prognosis markers. Here, we analyzed 847 miRNAs expressed in 27 PCNSL specimens using microarray profiling and surveyed miRNA signature for prognostic prediction. Of these, 16 miRNAs were expressed in 27 PCNSL specimens at a frequency of 48%. Their variable importance measured by Random forest model revealed miR-192, miR-486, miR-28, miR-52, miR-181b, miR-194, miR-197, miR-93, miR-708, and let-7g as having positive effects; miR-29b-2*, miR-126, and miR-182 as having negative effects; and miR-18a*, miR-425, and miR-30d as neutral. After principal component analysis, the prediction formula for prognosis, consisting of the expression values of the above-mentioned miRNAs, clearly divided Kaplan-Meier survival curves by the calculated Z-score (HR = 6.4566, P = 0.0067). The 16 miRNAs were enriched by gene ontology terms including angiogenesis, cell migration and proliferation, and apoptosis, in addition to signaling pathways including TGF-β/SMAD, Notch, TNF, and MAPKinase. Their target genes included BCL2-related genes, HMGA2 oncogene, and LIN28B cancer stem cell marker. Furthermore, three miRNAs including miR-181b, miR-30d, and miR-93, selected from the 16 miRNAs, also showed comparable results for survival (HR = 8.9342, P = 0.0007), suggestive of a miRNA signature for prognostic prediction in PCNSL. These results indicate that this miRNA signature is useful for prognostic prediction in PCNSL and would help us understand target pathways for therapies in PCNSL.
Collapse
Affiliation(s)
- Yasuo Takashima
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuo Iwadate
- Department of Neurosurgery, Graduate School of Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroaki Hondoh
- Departments of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Junya Fukai
- Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Koji Kajiwara
- Department of Neurosurgery, Graduate School of Medical Sciences, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
7
|
Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, Volante M, Morena D, Lingua MF, Brancaccio M, Guerrasio A, Pandolfi PP, Saglio G, Taulli R, Morotti A. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget 2018; 8:35508-35522. [PMID: 28418900 PMCID: PMC5482594 DOI: 10.18632/oncotarget.16348] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Guido Parvis
- Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Marco Volante
- Division of Pathology, San Luigi Hospital, Orbassano, Italy.,Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| |
Collapse
|
8
|
Guinn D, Lehman A, Fabian C, Yu L, Maddocks K, Andritsos LA, Jones JA, Flynn JM, Jaglowski SM, Woyach JA, Byrd JC, Johnson AJ. The regulation of tumor-suppressive microRNA, miR-126, in chronic lymphocytic leukemia. Cancer Med 2017; 6:778-787. [PMID: 28299881 PMCID: PMC5387133 DOI: 10.1002/cam4.996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
The introduction of miR profiling of chronic lymphocytic leukemia (CLL) patients with different cytogenetic profiles and responses to therapy has allowed incorporation of important miR‐mRNA interactions into the understanding of disease biology. In this study, we performed miR expression analysis using NanoString nCounter to discover differentially regulated miRs after therapy with the Bruton tyrosine kinase inhibitor ibrutinib. Of the differentially regulated miRs in the discovery set, miR‐29c and miR‐126 were confirmed using real‐time PCR to be upregulated in CLL patient cells with ibrutinib therapy. In the validation set, an inverse correlation was observed between miR‐126 levels and expression of its putative target p85β, an isoform of the phosphoinositide 3‐kinase p85 regulatory subunit. We found that mRNA for the host gene EGFL7, primary unprocessed miR‐126, and mature miR‐126 are all downregulated in CLL cells compared to normal B cells. Patients in later stages of disease have a greater decrease in miR‐126 expression compared to treatment‐naive patients, indicating that lower miR‐126 levels may associate with disease progression. Overexpression of miR‐126 in leukemia cell lines significantly downregulates p85β expression and decreases activation of prosurvival mitogen‐activated protein kinase (MAPK) signaling. These results implicate miR‐126 in the pathology of CLL.
Collapse
Affiliation(s)
- Daphne Guinn
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amy Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Catherine Fabian
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Kami Maddocks
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Leslie A Andritsos
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey A Jones
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Joseph M Flynn
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Samantha M Jaglowski
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1. Oncol Rep 2016; 36:2511-2516. [PMID: 27666896 PMCID: PMC5055196 DOI: 10.3892/or.2016.5117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.
Collapse
|