1
|
Na X, Zou B, Zheng X, Du M, Zhu B, Wu C. Synergistic Antimicrobial Hybrid Bio-Surface Formed by Self-Assembled BSA Nanoarchitectures with Chitosan Oligosaccharide. Biomacromolecules 2023; 24:4093-4102. [PMID: 37602440 DOI: 10.1021/acs.biomac.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Innovation in green, convenient, and sustainable antimicrobial packaging materials for food is an inevitable trend to address global food waste challenges caused by microbial contamination. In this study, we developed a biogenic, hydrophobic, and antimicrobial protein network coating for food packaging. Experimental results show that disulfide bond breakage can induce the self-assembly of bovine albumin (BSA) into protein networks driven by hydrophobic interactions, and chitosan oligosaccharide (COS) with antimicrobial activity can be stably bound in this network by electrostatic interactions. The inherent antimicrobial activity of COS and the numerous hydrophobic regions on the surface of the BSA-network give the BSA@COS-network significant in vitro antimicrobial ability. More importantly, the BSA@COS-network coating can prolong the onset of spoilage of strawberries in various packaging materials by nearly 3-fold in storage. This study shows how surface functionalization via protein self-assembly is integrated with the biological functioning of natural antibacterial activity for advanced food packaging applications.
Collapse
Affiliation(s)
- Xiaokang Na
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Bowen Zou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| |
Collapse
|
2
|
Andrade MA, Barbosa CH, Cerqueira MA, Azevedo AG, Barros C, Machado AV, Coelho A, Furtado R, Correia CB, Saraiva M, Vilarinho F, Silva AS, Ramos F. PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Zhao L, Zhang M, Mujumdar AS, Adhikari B, Wang H. Preparation of a Novel Carbon Dot/Polyvinyl Alcohol Composite Film and Its Application in Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37528-37539. [PMID: 35944155 DOI: 10.1021/acsami.2c10869] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) were synthesized with the facile hydrothermal method to produce CDs/polyvinyl alcohol (PVA) active food packaging films. The CDs had a diameter ranging from 2.01 to 5.61 nm and were well-dispersed. The effects of different concentrations of CDs on mechanical strength, water resistance, morphology, optical, and thermal performance of the CDs/PVA films were discussed. The incorporation of CDs in the PVA film improved its mechanical properties, water resistance properties, UV blocking properties, and thermal stability and endowed the composite film with antioxidant and antimicrobial properties. The maximum scavenging rates of 2,2-diphenyl-1-picrylhydrazyl and ABTS free radicals by the 0.50% CDs/PVA film were 72.81 and 97.08%, respectively. The inhibition zone diameters of the 0.50% CDs/PVA solution against Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli) were 9.52, 8.21, and 9.05 mm, respectively. Using the 0.50% CDs/PVA film as active packaging, the shelf life of banana, jujube, and fried meatballs was observed to be extended significantly. These results demonstrate the viability of the CDs/PVA composite film as a promising active food packaging material.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X3V9 Ste Anne de Bellevue, Quebec, Canada
| | - Benu Adhikari
- School of Applied Sciences, RMIT University, VIC3083 Melbourne, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhao L, Zhang M, Mujumdar AS, Wang H. Application of carbon dots in food preservation: a critical review for packaging enhancers and food preservatives. Crit Rev Food Sci Nutr 2022; 63:6738-6756. [PMID: 35174744 DOI: 10.1080/10408398.2022.2039896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have two unique advantages: one is ease of synthesis at low price, the other is desirable physical and chemical properties, such as ultra-small size, abundant surface functional groups, nontoxic/low-toxicity, good biocompatibility, excellent antibacterial and antioxidant activities etc. These advantages provide opportunities for the development of new food packaging enhancers and food preservatives. This paper systematically reviews the studies of CDs used to strengthen the physical properties of food packaging, including strengthen mechanical strength, ultraviolet (UV) barrier properties and water barrier properties. It also reviews the researches of CDs used to fabricate active packaging with antioxidant and/or antibacterial properties and intelligent packaging with the capacity of sensing the freshness of food. In addition, it analyzes the antioxidant and antibacterial properties of CDs as preservatives, and discusses the effect of CDs applied as coating agents and nano-level food additives for extension the shelf life of food samples. It also provides a brief review on the security and the release behavior of CDs.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Abstract
Plastic is one of the most demanded materials on the planet, and the increasing consumption of which contributes to the accumulation of significant amounts of waste based on it. For this reason, a new approach to the development of these materials has been formed: the production of polymers with constant operational characteristics during the period of consumption and capable of then being destroyed under the influence of environmental factors and being involved in the metabolic processes of natural biosystems. The paper outlines the prerequisites for the development of the field of creating biodegradable composite materials, as well as the main technical solutions for obtaining such polymeric materials. The main current solutions for reducing and regulating the degradation time of polymer materials are presented. The most promising ways of further development of the field of bioplastics production are described. Common types of polymers based on renewable raw materials, composites with their use, and modified materials from natural and synthetic polymers are considered.
Collapse
|
6
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
7
|
Paszkiewicz S, Szymczyk A, Pawlikowska D, Irska I, Taraghi I, Pilawka R, Gu J, Li X, Tu Y, Piesowicz E. Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)-block-poly(tetramethylene oxide) copolymers. RSC Adv 2017. [DOI: 10.1039/c7ra07172h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A series of PETG-block-PTMO copolymers were synthesized by means of a polycondensation process and characterized using1H nuclear magnetic resonance and Fourier transform infrared spectroscopy, that confirm the successful synthesis of the material.
Collapse
Affiliation(s)
- Sandra Paszkiewicz
- West Pomeranian University of Technology
- Institute of Materials Science and Engineering
- 70310 Szczecin
- Poland
| | - Anna Szymczyk
- West Pomeranian University of Technology
- Institute of Physics
- 70311 Szczecin
- Poland
| | - Daria Pawlikowska
- West Pomeranian University of Technology
- Institute of Materials Science and Engineering
- 70310 Szczecin
- Poland
| | - Izabela Irska
- West Pomeranian University of Technology
- Institute of Materials Science and Engineering
- 70310 Szczecin
- Poland
| | - Iman Taraghi
- West Pomeranian University of Technology
- Institute of Materials Science and Engineering
- 70310 Szczecin
- Poland
- Semnam University
| | - Ryszard Pilawka
- West Pomeranian University of Technology
- Polymer Institute
- 70322 Szczecin
- Poland
- New Era Materials Sp. z o.o
| | - Jiali Gu
- College of Soochow University
- Suzhou 215123
- China
| | - Xiaohong Li
- College of Soochow University
- Suzhou 215123
- China
| | - Yingfeng Tu
- College of Soochow University
- Suzhou 215123
- China
| | - Elzbieta Piesowicz
- West Pomeranian University of Technology
- Institute of Materials Science and Engineering
- 70310 Szczecin
- Poland
| |
Collapse
|