1
|
Sulastri E, Lesmana R, Zubair MS, Elamin KM, Wathoni N. A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chem Pharm Bull (Tokyo) 2021; 69:432-443. [PMID: 33952853 DOI: 10.1248/cpb.c20-00763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulvan is a natural sulfated polysaccharide obtained from marine green algae composed of 3-sulfated rhamnoglucuronan as the main component. It has a unique chemical structure that rich of L-rhamnosa, D-glucuronic acid, and L-iduronic acid. Ulvan has a similar structure to glycosaminoglycans (GAGs) in mammals including chondroitin sulfate, dermatan sulfate, and heparan sulfate that has broad range applications for many years. Here, we provide an overview of ulvan based hydrogels for biomedical applications. Hydrogels are one of ulvan advances in polymer science for application in drug delivery, tissue engineering, and wound healing. This review presented an overview about functional information of ulvan based hydrogels and the promising potential in biomedicals collected from published papers in Scopus, PubMed, and Google Scholar. Other important aspects concerning properties, hydrogel-forming mechanisms, and ulvan based hydrogel developments were reported as well. As conclusion, ulvan showed interesting properties in forming hydrogels and promising advances in biomedical applications.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako
| | - Ronny Lesmana
- Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran
| | | | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran
| |
Collapse
|
2
|
Qi X, Zhang M, Su T, Pan W, Tong X, Zeng Q, Xiong W, Jiang N, Qian Y, Li Z, He X, Shen L, Zhou Z, Shen J. Biocompatible Hydrogels Based on Food Gums with Tunable Physicochemical Properties as Scaffolds for Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3770-3778. [PMID: 32084311 DOI: 10.1021/acs.jafc.9b06120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogels composed of food gums have gained attention for future biomedical applications, such as targeted delivery and tissue engineering. For their translation to clinical utilization, reliable biocompatibility, sufficient mechanical performance, and tunable structure of polysaccharide hydrogels are required aspects. In this work, we report a unique hybrid polysaccharide hydrogel composed of salecan and curdlan, in which the former is a thickening agent and the latter serves as a network matrix. The physicochemical properties, such as mechanical strength, thermal stability, swelling, and morphology, of the developed composite hydrogel can be accurately modulated by varying the polysaccharide content. Importantly, cytotoxicity assays show the non-toxicity of this hybrid hydrogel. Furthermore, this hydrogel system can support cell proliferation, migration, and function. Altogether, our work proposes a new strategy to build a polysaccharide-constructed hydrogel scaffold, which holds much promise for tissue engineering in terms of cell engraftment, survival, proliferation, and function.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Mengying Zhang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Ting Su
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Wenhao Pan
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Xianqin Tong
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Qiankun Zeng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Ning Jiang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Yuna Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| | - Zhipeng Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Xiaojun He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, People's Republic of China
| |
Collapse
|
4
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|