1
|
Togra C, Dhage R, Rajyaguru PI. Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae. Genetics 2024; 228:iyae127. [PMID: 39093296 DOI: 10.1093/genetics/iyae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
Collapse
Affiliation(s)
- Chitra Togra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Riya Dhage
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
2
|
Schmok JC, Jain M, Street LA, Tankka AT, Schafer D, Her HL, Elmsaouri S, Gosztyla ML, Boyle EA, Jagannatha P, Luo EC, Kwon EJ, Jovanovic M, Yeo GW. Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion. Nat Biotechnol 2024; 42:1429-1441. [PMID: 38168984 PMCID: PMC11389820 DOI: 10.1038/s41587-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
RNA-binding proteins (RBPs) modulate alternative splicing outcomes to determine isoform expression and cellular survival. To identify RBPs that directly drive alternative exon inclusion, we developed tethered function luciferase-based splicing reporters that provide rapid, scalable and robust readouts of exon inclusion changes and used these to evaluate 718 human RBPs. We performed enhanced cross-linking immunoprecipitation, RNA sequencing and affinity purification-mass spectrometry to investigate a subset of candidates with no prior association with splicing. Integrative analysis of these assays indicates surprising roles for TRNAU1AP, SCAF8 and RTCA in the modulation of hundreds of endogenous splicing events. We also leveraged our tethering assays and top candidates to identify potent and compact exon inclusion activation domains for splicing modulation applications. Using these identified domains, we engineered programmable fusion proteins that outperform current artificial splicing factors at manipulating inclusion of reporter and endogenous exons. This tethering approach characterizes the ability of RBPs to induce exon inclusion and yields new molecular parts for programmable splicing control.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alex T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara Elmsaouri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Generation of programmable splicing factors using RNA-binding proteins that activate exon inclusion. Nat Biotechnol 2024; 42:1364-1365. [PMID: 38168983 DOI: 10.1038/s41587-023-02032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
|
4
|
Thurm AR, Finkel Y, Andrews C, Cai XS, Benko C, Bintu L. High-throughput discovery of regulatory effector domains in human RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604317. [PMID: 39071298 PMCID: PMC11275849 DOI: 10.1101/2024.07.19.604317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
RNA regulation plays an integral role in tuning gene expression and is controlled by thousands of RNA-binding proteins (RBPs). We develop and use a high-throughput recruitment assay (HT-RNA-Recruit) to identify regulatory domains within human RBPs by recruiting over 30,000 protein tiles from 367 RBPs to a reporter mRNA. We discover over 100 unique RNA-regulatory effectors in 86 distinct RBPs, presenting evidence that RBPs contain functionally separable domains that dictate their post-transcriptional control of gene expression, and identify some with unique activity at 5' or 3'UTRs. We identify some domains that downregulate gene expression both when recruited to DNA and RNA, and dissect their mechanisms of regulation. Finally, we build a synthetic RNA regulator that can stably maintain gene expression at desired levels that are predictable by a mathematical model. This work serves as a resource for human RNA-regulatory effectors and expands the synthetic repertoire of RNA-based genetic control tools. Highlights HT-RNA-Recruit identifies hundreds of RNA-regulatory effectors in human proteins.Recruitment to 5' and 3' UTRs identifies regulatory domains unique to each position.Some protein domains have both transcriptional and post-transcriptional regulatory activity.We develop a synthetic RNA regulator and a mathematical model to describe its behavior.
Collapse
|
5
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
6
|
Zhao Y, Chen J, Zheng H, Luo Y, An M, Lin Y, Pang M, Li Y, Kong Y, He W, Lin T, Chen C. SUMOylation-Driven mRNA Circularization Enhances Translation and Promotes Lymphatic Metastasis of Bladder Cancer. Cancer Res 2024; 84:434-448. [PMID: 37991737 PMCID: PMC10831341 DOI: 10.1158/0008-5472.can-23-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Aberrant gene expression is a prominent feature of metastatic cancer. Translational initiation is a vital step in fine-tuning gene expression. Thus, exploring translation initiation regulators may identify therapeutic targets for preventing and treating metastasis. Herein, we identified that DHCR24 was overexpressed in lymph node (LN) metastatic bladder cancer and correlated with poor prognosis of patients. DHCR24 promoted lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Mechanistically, DHCR24 mediated and recognized the SUMO2 modification at lysine 108 of hnRNPA2B1 to foster TBK1 mRNA circularization and eIF4F initiation complex assembly by enhancing hnRNPA2B1-eIF4G1 interaction. Moreover, DHCR24 directly anchored to TBK1 mRNA 3'-untranslated region to increase its stability, thus forming a feed forward loop to elevate TBK1 expression. TBK1 activated PI3K/Akt signaling to promote VEGFC secretion, resulting in lymphangiogenesis and LN metastasis. DHCR24 silencing significantly impeded bladder cancer lymphangiogenesis and lymphatic metastasis in a patient-derived xenograft model. Collectively, these findings elucidate DHCR24-mediated translation machinery that promotes lymphatic metastasis of bladder cancer and supports the potential application of DHCR24-targeted therapy for LN-metastatic bladder cancer. SIGNIFICANCE DHCR24 is a SUMOylation regulator that controls translation initiation complex assembly and orchestrates TBK1 mRNA circularization to activate Akt/VEGFC signaling, which stimulates lymphangiogenesis and promotes lymph node metastasis in bladder cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
7
|
Reynaud K, McGeachy AM, Noble D, Meacham ZA, Ingolia NT. Surveying the global landscape of post-transcriptional regulators. Nat Struct Mol Biol 2023; 30:740-752. [PMID: 37231154 PMCID: PMC10279529 DOI: 10.1038/s41594-023-00999-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Numerous proteins regulate gene expression by modulating mRNA translation and decay. To uncover the full scope of these post-transcriptional regulators, we conducted an unbiased survey that quantifies regulatory activity across the budding yeast proteome and delineates the protein domains responsible for these effects. Our approach couples a tethered function assay with quantitative single-cell fluorescence measurements to analyze ~50,000 protein fragments and determine their effects on a tethered mRNA. We characterize hundreds of strong regulators, which are enriched for canonical and unconventional mRNA-binding proteins. Regulatory activity typically maps outside the RNA-binding domains themselves, highlighting a modular architecture that separates mRNA targeting from post-transcriptional regulation. Activity often aligns with intrinsically disordered regions that can interact with other proteins, even in core mRNA translation and degradation factors. Our results thus reveal networks of interacting proteins that control mRNA fate and illuminate the molecular basis for post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Anna M McGeachy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David Noble
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Kuzmin AA, Tomilin AN. Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases. Int J Mol Sci 2022; 24:ijms24010397. [PMID: 36613839 PMCID: PMC9820447 DOI: 10.3390/ijms24010397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Tools developed in the fields of genome engineering, precise gene regulation, and synthetic gene networks have an increasing number of applications. When shared with the scientific community, these tools can be used to further unlock the potential of precision medicine and tissue engineering. A large number of different genetic elements, as well as modifications, have been used to create many different systems and to validate some technical concepts. New studies have tended to optimize or improve existing elements or approaches to create complex synthetic systems, especially those based on the relatively new CRISPR technology. In order to maximize the output of newly developed approaches and to move from proof-of-principle experiments to applications in regenerative medicine, it is important to navigate efficiently through the vast number of genetic elements to choose those most suitable for specific needs. In this review, we have collected information regarding the main genetic elements and their modifications, which can be useful in different synthetic systems with an emphasis of those based on CRISPR technology. We have indicated the most suitable elements and approaches to choose or combine in planning experiments, while providing their deeper understanding, and have also stated some pitfalls that should be avoided.
Collapse
|
9
|
Haugen RJ, Arvola RM, Connacher RP, Roden RT, Goldstrohm AC. A conserved domain of Drosophila RNA-binding protein Pumilio interacts with multiple CCR4-NOT deadenylase complex subunits to repress target mRNAs. J Biol Chem 2022; 298:102270. [PMID: 35850301 PMCID: PMC9418443 DOI: 10.1016/j.jbc.2022.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Pumilio is a sequence-specific RNA-binding protein that controls development, stem cell fate, and neurological functions in Drosophila. Pumilio represses protein expression by destabilizing target mRNAs in a manner dependent on the CCR4-NOT deadenylase complex. Three unique repression domains in the N-terminal region of Pumilio were previously shown to recruit CCR4-NOT, but how they do so was not well understood. In this study, we identified the motifs that are necessary and sufficient for the activity of the third repression domain of Pumilio, designated RD3, which is present in all isoforms and has conserved regulatory function. We identified multiple conserved regions of RD3 that are important for repression activity in cell-based reporter gene assays. Using yeast two-hybrid assays, we show that RD3 contacts specific regions of the Not1, Not2, and Not3 subunits of the CCR4-NOT complex. Our results indicate that RD3 makes multivalent interactions with CCR4-NOT mediated by conserved short linear interaction motifs. Specifically, two phenylalanine residues in RD3 make crucial contacts with Not1 that are essential for its repression activity. Using reporter gene assays, we also identify three new target mRNAs that are repressed by Pumilio and show that RD3 contributes to their regulation. Together, these results provide important insights into the mechanism by which Pumilio recruits CCR4-NOT to regulate the expression of target mRNAs.
Collapse
Affiliation(s)
- Rebecca J Haugen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - René M Arvola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert P Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard T Roden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
10
|
Cuerda-Gil D, Hung YH, Panda K, Slotkin RK. A plant tethering system for the functional study of protein-RNA interactions in vivo. PLANT METHODS 2022; 18:75. [PMID: 35658900 PMCID: PMC9166424 DOI: 10.1186/s13007-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein's function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins.
Collapse
Affiliation(s)
- Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Le P, Ahmed N, Yeo GW. Illuminating RNA biology through imaging. Nat Cell Biol 2022; 24:815-824. [PMID: 35697782 PMCID: PMC11132331 DOI: 10.1038/s41556-022-00933-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.
Collapse
Affiliation(s)
- Phuong Le
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Eberle AB, Mühlemann O. Tethered Function Assays to Elucidate the Role of RNA-Binding Proteins. Methods Mol Biol 2022; 2537:285-306. [PMID: 35895271 DOI: 10.1007/978-1-0716-2521-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fate of each RNA molecule is strongly determined by RNA-binding proteins (RBPs) which accompany transcripts from its synthesis to its degradation. To elucidate the effect of a specific RBP on bound RNA, it can be artificially recruited to a specific site on a reporter mRNA that can be followed by a variety of methods. In this so-called tethering assay, the protein of interest (POI) is fused to the coat protein of the MS2 bacteriophage and expressed in your favorite cells together with a reporter gene containing MS2 binding sites. The MS2 binding sites are recognized by the MS2 coat protein (MS2CP) with high affinity and specificity and by doing so, the POI is tethered to the reporter RNA. Here, we describe how with the help of this assay the human cytoplasmic poly(A) binding protein is recruited to a mini-μ RNA reporter, thereby influencing the stability of the reporter transcript.
Collapse
Affiliation(s)
- Andrea B Eberle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Zhou YF, Zhang YC, Sun YM, Yu Y, Lei MQ, Yang YW, Lian JP, Feng YZ, Zhang Z, Yang L, He RR, Huang JH, Cheng Y, Liu YW, Chen YQ. The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nat Commun 2021; 12:6525. [PMID: 34764271 PMCID: PMC8585977 DOI: 10.1038/s41467-021-26795-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
The cereal endosperm is a major factor determining seed size and shape. However, the molecular mechanisms of endosperm development are not fully understood. Long noncoding RNAs (lncRNAs) function in various biological processes. Here we show a lncRNA, MISSEN, that plays an essential role in early endosperm development in rice (Oryza sativa). MISSEN is a parent-of-origin lncRNA expressed in endosperm, and negatively regulates endosperm development, leading to a prominent dent and bulge in the seed. Mechanistically, MISSEN functions through hijacking a helicase family protein (HeFP) to regulate tubulin function during endosperm nucleus division and endosperm cellularization, resulting in abnormal cytoskeletal polymerization. Finally, we revealed that the expression of MISSEN is inhibited by histone H3 lysine 27 trimethylation (H3K27me3) modification after pollination. Therefore, MISSEN is the first lncRNA identified as a regulator in endosperm development, highlighting the potential applications in rice breeding.
Collapse
Affiliation(s)
- Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Wei Liu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, 510275, Guangzhou, China. .,MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
14
|
Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, Zeng Z, Yang Q, Pan Q, Chen T, Luo X, Chen Y. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell 2021; 81:4493-4508.e9. [PMID: 34555354 DOI: 10.1016/j.molcel.2021.08.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023]
Abstract
Initiation is the rate-limiting step in translation, and its dysregulation is vital for carcinogenesis, including hematopoietic malignancy. Thus, discovery of novel translation initiation regulators may provide promising therapeutic targets. Here, combining Ribo-seq, mass spectrometry, and RNA-seq datasets, we discovered an oncomicropeptide, APPLE (a peptide located in ER), encoded by a non-coding RNA transcript in acute myeloid leukemia (AML). APPLE is overexpressed in various subtypes of AML and confers a poor prognosis. The micropeptide is enriched in ribosomes and regulates the initiation step to enhance translation and to maintain high rates of oncoprotein synthesis. Mechanically, APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization and eIF4F initiation complex assembly to support a specific pro-cancer translation program. Targeting APPLE exhibited broad anti-cancer effects in vitro and in vivo. This study not only reports a previously unknown function of micropeptides but also provides new opportunities for targeting the translation machinery in cancer cells.
Collapse
Affiliation(s)
- Linyu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wentao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yumeng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhancheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qianqian Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qi Pan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xuequn Luo
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yueqin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
15
|
Tagging and Capturing of Lentiviral Vectors Using Short RNAs. Int J Mol Sci 2021; 22:ijms221910263. [PMID: 34638603 PMCID: PMC8508951 DOI: 10.3390/ijms221910263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022] Open
Abstract
Lentiviral (LV) vectors have emerged as powerful tools for transgene delivery ex vivo but in vivo gene therapy applications involving LV vectors have faced a number of challenges, including the low efficiency of transgene delivery, a lack of tissue specificity, immunogenicity to both the product encoded by the transgene and the vector, and the inactivation of the vector by the human complement cascade. To mitigate these issues, several engineering approaches, involving the covalent modification of vector particles or the incorporation of specific protein domains into the vector’s envelope, have been tested. Short synthetic oligonucleotides, including aptamers bound to the surface of LV vectors, may provide a novel means with which to retarget LV vectors to specific cells and to shield these vectors from neutralization by sera. The purpose of this study was to develop strategies to tether nucleic acid sequences, including short RNA sequences, to LV vector particles in a specific and tight fashion. To bind short RNA sequences to LV vector particles, a bacteriophage lambda N protein-derived RNA binding domain (λN), fused to the measles virus hemagglutinin protein, was used. The λN protein bound RNA sequences bearing a boxB RNA hairpin. To test this approach, we used an RNA aptamer specific to the human epidermal growth factor receptor (EGFR), which was bound to LV vector particles via an RNA scaffold containing a boxB RNA motif. The results obtained confirmed that the EGFR-specific RNA aptamer bound to cells expressing EGFR and that the boxB containing the RNA scaffold was bound specifically to the λN RNA binding domain attached to the vector. These results show that LV vectors can be equipped with nucleic acid sequences to develop improved LV vectors for in vivo applications.
Collapse
|
16
|
Aoki ST, Lynch TR, Crittenden SL, Bingman CA, Wickens M, Kimble J. C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nat Commun 2021; 12:996. [PMID: 33579952 PMCID: PMC7881195 DOI: 10.1038/s41467-021-21278-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic RNA-protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein-RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.
Collapse
Affiliation(s)
- Scott Takeo Aoki
- grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN USA ,grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Tina R. Lynch
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sarah L. Crittenden
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| | - Craig A. Bingman
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Judith Kimble
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
17
|
Mishima Y, Inoue K. Tethered Function Assay to Study RNA-Regulatory Proteins in Zebrafish Embryos. Methods Mol Biol 2021; 2218:347-354. [PMID: 33606244 DOI: 10.1007/978-1-0716-0970-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many proteins are assumed to mediate post-transcriptional regulation of mRNAs. However, the lack of information about their target mRNAs and functional domains hampers the detailed analysis of their molecular function. Here we describe a method to analyze the post-transcriptional effects of proteins of interest by artificially tethering the protein to a reporter mRNA in zebrafish embryos.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Lifesciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Abstract
Functional characterizations and molecular dissections of long noncoding RNAs (lncRNAs) are critical to understand their involvement in the cellular regulatory network. LncRNAs exert their effects through functional RNA domains that interact with other molecules, including proteins, DNA, and RNA. Here, we describe experimental procedures for generating genomic deletions in a human haploid cell line using the CRISPR/Cas9 system. This method can be applied to examine functions of lncRNAs and their domains by establishing knockout and partial deletion mutant cell lines. In addition, we describe a CRISPR-mediated knockin method for artificial tethering of partner RNA-binding proteins to lncRNAs and its use to validate lncRNA-mediated functions.
Collapse
|
19
|
Luo EC, Nathanson JL, Tan FE, Schwartz JL, Schmok JC, Shankar A, Markmiller S, Yee BA, Sathe S, Pratt GA, Scaletta DB, Ha Y, Hill DE, Aigner S, Yeo GW. Large-scale tethered function assays identify factors that regulate mRNA stability and translation. Nat Struct Mol Biol 2020; 27:989-1000. [PMID: 32807991 DOI: 10.1038/s41594-020-0477-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The molecular functions of the majority of RNA-binding proteins (RBPs) remain unclear, highlighting a major bottleneck to a full understanding of gene expression regulation. Here, we develop a plasmid resource of 690 human RBPs that we subject to luciferase-based 3'-untranslated-region tethered function assays to pinpoint RBPs that regulate RNA stability or translation. Enhanced UV-cross-linking and immunoprecipitation of these RBPs identifies thousands of endogenous mRNA targets that respond to changes in RBP level, recapitulating effects observed in tethered function assays. Among these RBPs, the ubiquitin-associated protein 2-like (UBAP2L) protein interacts with RNA via its RGG domain and cross-links to mRNA and rRNA. Fusion of UBAP2L to RNA-targeting CRISPR-Cas9 demonstrates programmable translational enhancement. Polysome profiling indicates that UBAP2L promotes translation of target mRNAs, particularly global regulators of translation. Our tethering survey allows rapid assignment of the molecular activity of proteins, such as UBAP2L, to specific steps of mRNA metabolism.
Collapse
Affiliation(s)
- En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jason L Nathanson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frederick E Tan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Duy B Scaletta
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuanchi Ha
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Stem Cell Program, University of California, San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Du M, Jillette N, Zhu JJ, Li S, Cheng AW. CRISPR artificial splicing factors. Nat Commun 2020; 11:2973. [PMID: 32532987 PMCID: PMC7293279 DOI: 10.1038/s41467-020-16806-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Alternative splicing allows expression of mRNA isoforms from a single gene, expanding the diversity of the proteome. Its prevalence in normal biological and disease processes warrant precise tools for modulation. Here we report the engineering of CRISPR Artificial Splicing Factors (CASFx) based on RNA-targeting CRISPR-Cas systems. We show that simultaneous exon inclusion and exclusion can be induced at distinct targets by differential positioning of CASFx. We also create inducible CASFx (iCASFx) using the FKBP-FRB chemical-inducible dimerization domain, allowing small molecule control of alternative splicing. Finally, we demonstrate the activation of SMN2 exon 7 splicing in spinal muscular atrophy (SMA) patient fibroblasts, suggesting a potential application of the CASFx system.
Collapse
Affiliation(s)
- Menghan Du
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Albert Wu Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA.
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
21
|
Brothers WR, Hebert S, Kleinman CL, Fabian MR. A non-canonical role for the EDC4 decapping factor in regulating MARF1-mediated mRNA decay. eLife 2020; 9:e54995. [PMID: 32510323 PMCID: PMC7279887 DOI: 10.7554/elife.54995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
EDC4 is a core component of processing (P)-bodies that binds the DCP2 decapping enzyme and stimulates mRNA decay. EDC4 also interacts with mammalian MARF1, a recently identified endoribonuclease that promotes oogenesis and contains a number of RNA binding domains, including two RRMs and multiple LOTUS domains. How EDC4 regulates MARF1 action and the identity of MARF1 target mRNAs is not known. Our transcriptome-wide analysis identifies bona fide MARF1 target mRNAs and indicates that MARF1 predominantly binds their 3' UTRs via its LOTUS domains to promote their decay. We also show that a MARF1 RRM plays an essential role in enhancing its endonuclease activity. Importantly, we establish that EDC4 impairs MARF1 activity by preventing its LOTUS domains from binding target mRNAs. Thus, EDC4 not only serves as an enhancer of mRNA turnover that binds DCP2, but also as a repressor that binds MARF1 to prevent the decay of MARF1 target mRNAs.
Collapse
Affiliation(s)
- William R Brothers
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
| | - Steven Hebert
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Human Genetics, McGill UniversityMontrealCanada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Biochemistry, McGill UniversityMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| |
Collapse
|
22
|
Kunii A, Yamamoto T, Sakuma T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell Dev Biol Anim 2020; 56:359-366. [PMID: 32514717 DOI: 10.1007/s11626-020-00469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022]
Abstract
CRISPR-Cas9 is a sophisticated tool in which Cas9/sgRNA complexes bind to the programmed target sequences and induce DNA double-strand breaks (DSBs) enabling highly efficient genome editing. Moreover, when nuclease-inactive Cas9 (dCas9) is employed, its specific DNA-binding activity provides a variety of derivative technologies such as transcriptional activation/repression, epigenome editing, and chromosome visualization. In these derivative technologies, particular effector molecules are fused with dCas9 or recruited to the target site. However, there had been room for improvement, because both genome editing and derivative technologies require not only the DNA-binding tools but also the additional components for their efficient and flexible outcomes. For genome editing, DSB repair molecules and knock-in donor templates need to act at the DSB sites. Derivative technologies also require their various effector domains to be gathered onto the target sites. Recently, many groups have developed and utilized inventive platforms to accumulate these additional components to the target sequence by modifying Cas9 protein and/or sgRNA. Here, we summarize the strategies of CRISPR-based effector accumulation and the improved methodologies using these creative platforms.
Collapse
Affiliation(s)
- Atsushi Kunii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
23
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Fischer JW, Busa VF, Shao Y, Leung AKL. Structure-Mediated RNA Decay by UPF1 and G3BP1. Mol Cell 2020; 78:70-84.e6. [PMID: 32017897 DOI: 10.1016/j.molcel.2020.01.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Post-transcriptional mechanisms regulate the stability and, hence, expression of coding and noncoding RNAs. Sequence-specific features within the 3' untranslated region (3' UTR) often direct mRNAs for decay. Here, we characterize a genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing. The decay pathway is independent of specific single-stranded sequences, as regulation is maintained in both the original and reverse complement orientation. Regulation can be compromised by reducing the overall structure by fusing the 3' UTR with an unstructured sequence. Mutating base-paired RNA regions can also compromise this structure-mediated regulation, which can be restored by re-introducing base-paired structures of different sequences. The decay pathway requires the RNA-binding protein UPF1 and its associated protein G3BP1. Depletion of either protein increased steady-state levels of mRNAs with highly structured 3' UTRs as well as highly structured circular RNAs. This structure-dependent mechanism therefore enables cells to selectively regulate coding and noncoding RNAs.
Collapse
Affiliation(s)
- Joseph W Fischer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Veronica F Busa
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yue Shao
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
26
|
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/8/a035386. [PMID: 31371352 DOI: 10.1101/cshperspect.a035386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA molecules perform diverse functions in mammalian cells, including transferring genetic information from DNA to protein and playing diverse regulatory roles through interactions with other cellular components. Here, we discuss how clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies for directed perturbations of DNA and RNA are revealing new insights into RNA regulation. First, we review the fundamentals of CRISPR-Cas enzymes and functional genomics tools that leverage these systems. Second, we explore how these new perturbation technologies are transforming the study of regulation of and by RNA, focusing on the functions of DNA regulatory elements and long noncoding RNAs (lncRNAs). Third, we highlight an emerging class of RNA-targeting CRISPR-Cas enzymes that have the potential to catalyze studies of RNA biology by providing tools to directly perturb or measure RNA modifications and functions. Together, these tools enable systematic studies of RNA function and regulation in mammalian cells.
Collapse
Affiliation(s)
- Jesse Engreitz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02139
| | - Omar Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
27
|
Nishimura T, Fakim H, Brandmann T, Youn JY, Gingras AC, Jinek M, Fabian MR. Human MARF1 is an endoribonuclease that interacts with the DCP1:2 decapping complex and degrades target mRNAs. Nucleic Acids Res 2019; 46:12008-12021. [PMID: 30364987 PMCID: PMC6294520 DOI: 10.1093/nar/gky1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis arrest female 1 (MARF1) is a cytoplasmic RNA binding protein that is essential for meiotic progression of mouse oocytes, in part by limiting retrotransposon expression. MARF1 is also expressed in somatic cells and tissues; however, its mechanism of action has yet to be investigated. Human MARF1 contains a NYN-like domain, two RRMs and eight LOTUS domains. Here we provide evidence that MARF1 post-transcriptionally silences targeted mRNAs. MARF1 physically interacts with the DCP1:DCP2 mRNA decapping complex but not with deadenylation machineries. Importantly, we provide a 1.7 Å resolution crystal structure of the human MARF1 NYN domain, which we demonstrate is a bona fide endoribonuclease, the activity of which is essential for the repression of MARF1-targeted mRNAs. Thus, MARF1 post-transcriptionally represses gene expression by serving as both an endoribonuclease and as a platform that recruits the DCP1:DCP2 decapping complex to targeted mRNAs.
Collapse
Affiliation(s)
- Tamiko Nishimura
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hana Fakim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Switzerland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Abshire ET, Chasseur J, Bohn JA, Del Rizzo PA, Freddolino L, Goldstrohm AC, Trievel RC. The structure of human Nocturnin reveals a conserved ribonuclease domain that represses target transcript translation and abundance in cells. Nucleic Acids Res 2018; 46:6257-6270. [PMID: 29860338 PMCID: PMC6158716 DOI: 10.1093/nar/gky412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
The circadian protein Nocturnin (NOCT) belongs to the exonuclease, endonuclease and phosphatase superfamily and is most similar to the CCR4-class of deadenylases that degrade the poly-adenosine tails of mRNAs. NOCT-deficient mice are resistant to high-fat diet induced weight gain, and exhibit dysregulation of bone formation. However, the mechanisms by which NOCT regulates these processes remain to be determined. Here, we describe a pair of high-resolution crystal structures of the human NOCT catalytic domain. The active site of NOCT is highly conserved with other exoribonucleases, and when directed to a transcript in cells, NOCT can reduce translation and abundance of that mRNA in a manner dependent on key active site residues. In contrast to the related deadenylase CNOT6L, purified recombinant NOCT lacks in vitro ribonuclease activity, suggesting that unidentified factors are necessary for enzymatic activity. We also find the ability of NOCT to repress reporter mRNAs in cells depends upon the 3' end of the mRNA, as reporters terminating with a 3' MALAT1 structure cannot be repressed by NOCT. Together, these data demonstrate that NOCT is an exoribonuclease that can degrade mRNAs to inhibit protein expression, suggesting a molecular mechanism for its regulatory role in lipid metabolism and bone development.
Collapse
Affiliation(s)
- Elizabeth T Abshire
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Chasseur
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul A Del Rizzo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Wheeler EC, Van Nostrand EL, Yeo GW. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28853213 PMCID: PMC5739989 DOI: 10.1002/wrna.1436] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
RNA binding proteins (RBPs) play key roles in determining cellular behavior by manipulating the processing of target RNAs. Robust methods are required to detect the numerous binding sites of RBPs across the transcriptome. RNA‐immunoprecipitation followed by sequencing (RIP‐seq) and crosslinking followed by immunoprecipitation and sequencing (CLIP‐seq) are state‐of‐the‐art methods used to identify the RNA targets and specific binding sites of RBPs. Historically, CLIP methods have been confounded with challenges such as the requirement for tens of millions of cells per experiment, low RNA yields resulting in libraries that contain a high number of polymerase chain reaction duplicated reads, and technical inconveniences such as radioactive labeling of RNAs. However, recent improvements in the recovery of bound RNAs and the efficiency of converting isolated RNAs into a library for sequencing have enhanced our ability to perform the experiment at scale, from less starting material than has previously been possible, and resulting in high quality datasets for the confident identification of protein binding sites. These, along with additional improvements to protein capture, removal of nonspecific signals, and methods to isolate noncanonical RBP targets have revolutionized the study of RNA processing regulation, and reveal a promising future for mapping the human protein‐RNA regulatory network. WIREs RNA 2018, 9:e1436. doi: 10.1002/wrna.1436 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Methods > RNA Analyses in Cells
Collapse
Affiliation(s)
- Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.,Stem Cell Program, University of California at San Diego, La Jolla, CA, USA.,Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA.,Molecular Engineering Laboratory, A*STAR, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|