1
|
Orso PB, Evangelista AG, de Melo Nazareth T, Luz C, Bordin K, Meca G, Luciano FB. Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production. Vet Res Commun 2024:10.1007/s11259-024-10552-4. [PMID: 39316351 DOI: 10.1007/s11259-024-10552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, and cause contamination of food and feed, with impacts in animal production and in food production chain. Effective detoxifying methods, such as biodegradation, are therefore required. This study aimed to isolate microorganisms and screen ZEA detoxifying strains. As a result, 197 microorganisms were isolated, and six were initially selected after colorimetric screening. ZEA (1 µg/mL) was added to culture media, and after 24 h, all six microorganisms were able to degrade ZEA, without the formation of α-ZOL. One isolate eliminated ~ 99% of ZEA and was identified as Bacillus velezensis CL197. ZEA metabolites produced by the bacteria were evaluated, and no metabolites with greater or similar toxicity than ZEA were detected. This strain was applied to swine in vitro digestion, and up to 64% of ZEA was degraded. B. velezensis CL197 significantly degraded ZEA, demonstrating potential to be used as a detoxifying agent in the food production chain as a biocontrol agent.
Collapse
Affiliation(s)
- Paloma Bianca Orso
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil
| | - Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil.
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Carlos Luz
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Keliani Bordin
- Polytechnic School, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Giuseppe Meca
- Departament Medicina Preventiva i Salut Pública, Ciències de l'Alimentació, Toxicologia i Medicina Legal, Facultad de Farmàcia, Universitat de València, Av. de Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155 - Prado Velho , Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
2
|
Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity. Toxins (Basel) 2020; 12:toxins12120752. [PMID: 33260604 PMCID: PMC7759803 DOI: 10.3390/toxins12120752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group. Finally, the toxins identified to levels 2 and 1 were prioritised according to their bioaccumulation factor, biodegradability, frequency of detection, and toxicity. This screening and prioritisation approach resulted in different natural toxins that should be further assessed for their ecotoxicological effects and considered in future studies.
Collapse
|
3
|
Pitt JI, Miller JD. A Concise History of Mycotoxin Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7021-7033. [PMID: 27960261 DOI: 10.1021/acs.jafc.6b04494] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxigenic fungi and mycotoxins entered human food supplies about the time when mankind first began to cultivate crops and to store them from one season to the next, perhaps 10,000 years ago. The storage of cereals probably initiated the transition by mankind from hunter-gatherer to cultivator, at the same time providing a vast new ecological niche for fungi pathogenic on grain crops or saprophytic on harvested grain, many of which produced mycotoxins. Grains have always been the major source of mycotoxins in the diet of man and his domestic animals. In the historical context, ergotism from Claviceps purpurea in rye has been known probably for more than 2000 years and caused the deaths of many thousands of people in Europe in the last millennium. Known in Japan since the 17th century, acute cardiac beriberi associated with the consumption of moldy rice was found to be due to citreoviridin produced by Penicillium citreonigrum. This toxin was believed to be only of historic importance until its reemergence in Brazil a few years ago. Other Penicillium toxins, including ochratoxin A, once considered to be a possible cause of Balkan endemic nephropathy, are treated in a historical context. The role of Fusarium toxins in human and animal health, especially T-2 toxin in alimentary toxic aleukia in Russia in the 1940s and fumonisins in equine leucoencephalomalasia, is set out in some detail. Finally, this paper documents the story of the research that led to our current understanding of the formation of aflatoxins in grains and nuts, due to the growth of Aspergillus flavus and its role, in synergy with the hepatitis B virus, in human liver cancer. During a period of climate change and greatly reduced crop diversity on a global basis, researchers tasked with monitoring the food system need to be aware of fungal toxins that might have been rare in their working careers that can reappear.
Collapse
MESH Headings
- Animals
- Crops, Agricultural/chemistry
- Crops, Agricultural/history
- Crops, Agricultural/microbiology
- Food Contamination/analysis
- Fungi/genetics
- Fungi/metabolism
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- History, Medieval
- Humans
- Mycotoxins/chemistry
- Mycotoxins/history
- Mycotoxins/metabolism
Collapse
Affiliation(s)
- John I Pitt
- CSIRO Agriculture and Food , P.O. Box 52, North Ryde, New South Wales 1670, Australia
| | - J David Miller
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Ahad R, Zhou T, Lepp D, Pauls KP. Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnol 2017; 17:30. [PMID: 28298196 PMCID: PMC5351178 DOI: 10.1186/s12896-017-0352-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
Background Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to achieve a novel biological trait capable of detoxifying various food and feed contaminating trichothecenes under aerobic and anaerobic conditions and wide range of temperatures. Results A highly enriched microbial consortium (called DX100) capable of transforming eleven trichothecenes to significantly less toxic de-epoxy forms was achieved after prolonged incubation of soil microbial culture with 200 μg/mL deoxynivalenol (DON). DX100 demonstrated de-epoxidation activity under aerobic and anaerobic conditions, a greater range of temperatures and around neutral pH. The consortium contains 70% known and 30% unknown bacterial species, dominated by Stenotrophomonas species. Probably novel bacteria including strains of Stenotrophomonas and Alkaliphilus-Blautia species complex could be involved in aerobic and anaerobic de-epoxidation of trichothecenes, respectively. DX100 showed rapid and stable activity by de-epoxidizing 100% of 50 μg/mL deoxynivalenol at 48 h of incubation and retaining de-epoxidation ability after 100 subcultures in mineral salts broth (MSB). It was able to de-epoxidize high concentration of DON (500 μg/mL), and transformed ten more food contaminating trichothecenes into de-epoxy forms and/or other known/unknown compounds. Microbial de-epoxidation rate increased with increasing trichothecene concentrations in the broth media, suggesting that DX100 maintains a robust trichothecene detoxifying mechanism. Furthermore, the nature of microbial de-epoxidation reaction and inhibition of the reaction by sodium azide and the finding that bacterial cell culture lysate retained activity suggests that certain cytoplasmic reductases may be responsible for the de-epoxidation activity. Conclusions This study reports the enrichment procedure for obtaining an effective and stable microbial consortium DX100 capable of de-epoxidizing several food contaminating trichothecene mycotoxins. DX100, which has de-epoxidation ability under wide range of conditions, represents a unique enzymatic source which has great industrial potential for reducing contamination of foods/feeds with multiple trichothecenes, and minimizing their synergistic/additive cytotoxic effects on consumer health.
Collapse
Affiliation(s)
- Rafiq Ahad
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada.
| | - Dion Lepp
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - K Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
5
|
Burgess KMN, Renaud JB, McDowell T, Sumarah MW. Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins. ACS Chem Biol 2016; 11:2618-25. [PMID: 27444057 DOI: 10.1021/acschembio.6b00438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fumonisins, notably FB1, FB2, FB3, and FB4, are economically important mycotoxins produced by a number Fusarium sp. that occur on corn, rice, and sorghum as well as by Aspergillus sp. on grapes. The fumonisin scaffold is comprised of a C18 polyketide backbone functionalized with two tricarballylic esters and an alanine derived amine. These functional groups contribute to fumonisin's ability to inhibit sphingolipid biosynthesis in animals, plants, and yeasts. We report for the first time the isolation and structure elucidation of two classes of nonaminated fumonisins (FPy and FLa) produced by Aspergillus welwitschiae. Using a Lemna minor (duckweed) bioassay, these new compounds were significantly less toxic in comparison to the fumonisin B mycotoxins, providing new insight into the mechanism of fumonisin toxicity. Time course fermentations monitoring the production of FB4, FPy4, and FLa4, as well as (13)C and (15)N stable isotope incorporation, suggest a novel postbiosynthetic oxidative deamination process for fumonisins. This pathway was further supported by a feeding study with FB1, a fumonisin not produced by Aspergillus sp., which resulted in its transformation to FPy1. This study demonstrates that Aspergillus have the ability to produce enzymes that could be used for fumonisin detoxification.
Collapse
Affiliation(s)
- Kevin M. N. Burgess
- London Research and
Development Centre
Agriculture and Agri-Food Canada, 1391
Sandford St., London, Ontario, Canada N5V 4T3
| | - Justin B. Renaud
- London Research and
Development Centre
Agriculture and Agri-Food Canada, 1391
Sandford St., London, Ontario, Canada N5V 4T3
| | - Tim McDowell
- London Research and
Development Centre
Agriculture and Agri-Food Canada, 1391
Sandford St., London, Ontario, Canada N5V 4T3
| | - Mark W. Sumarah
- London Research and
Development Centre
Agriculture and Agri-Food Canada, 1391
Sandford St., London, Ontario, Canada N5V 4T3
| |
Collapse
|