1
|
Dai L, An D, Huang J, Xiao M, Li Z, Zhou B, Liu H, Xu J, Chen X, Ruan Y. Ovarian multi-omics analysis reveals key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR as potential targets for regulating kidding traits in goats. Int J Biol Macromol 2024; 282:136737. [PMID: 39433193 DOI: 10.1016/j.ijbiomac.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The kidding traits of goats are an important index of production. However, the molecular regulatory mechanisms of kidding traits in goats have not been fully elucidated. This study aimed to investigate the molecular regulatory network of kidding traits in goats. Multi-omics revealed the enrichment of 10 signaling pathways, with fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, and steroid hormone biosynthesis pathways being closely related to reproduction. Interestingly, the key rate-limiting enzymes, fatty acid synthase (FASN), stearoyl-CoA desaturase 5 (SCD5), fatty acid desaturase 1 (FADS1), 3β-hydroxysteroid dehydrogenase/isomerase (3BHSD), and steroidogenic acute regulatory protein (STAR) enriched in these pathways regulate changes in reproduction-related metabolites. In interference experiments, it was observed that suppressing these key rate-limiting enzymes inhibited the expression of CYP19A1, ESR2, and FSHR. Furthermore, interference inhibited granulosa cell proliferation, caused cell cycle arrest, and promoted apoptosis. Thus, these results suggest that the specific markers of nanny goats with multiple kids are the key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR. These findings may greatly enhance the understanding of regulatory mechanisms that govern goat parturition.
Collapse
Affiliation(s)
- Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Dongwei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ziyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2024; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
4
|
Wang Y, Wang S, Zang Z, Li B, Liu G, Huang H, Zhao X. Molecular and transcriptomic analysis of the ovary during laying and brooding stages in Zhedong white geese ( Anser cygnoides domesticus). Br Poult Sci 2024; 65:631-644. [PMID: 38916443 DOI: 10.1080/00071668.2024.2364351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
1. This study investigates the molecular mechanisms affecting brooding in Zhedong white geese by examining differences in reproductive endocrine levels, ovarian histology and transcriptomics.2. Twenty 18-month-old Zhedong white geese were selected to examine their ovaries using histological, biochemical, molecular biological, and high-throughput sequencing techniques during the laying and brooding periods.3. The results showed that the number of atretic follicles and apoptotic cells in the ovaries increased significantly (p < 0.05), the levels of follicle-stimulating hormone, luteinising hormone, gonadotropin-releasing hormone and oestradiol decreased significantly (p < 0.05), and the level of prolactin increased significantly (p < 0.01) during the brooding stage.4. In broody geese, the expression of CASP3, CASP9, P53, BAX, and Cyt-c were considerably higher (p < 0.05), but BCL2 expression was significantly lower (p < 0.05).5. In ovarian tissues, 260 differentially expressed lncRNAs, 13 differentially expressed miRNA and 60 differentially expressed mRNA were all discovered using transcriptome sequencing analysis. Functional enrichment analysis revealed that the differentially expressed mRNA and non-coding RNA target genes were primarily involved in ECM-receptor interaction, cell adhesion, cardiac muscle contraction, mTOR signalling, and the calcium signalling pathway.6. In conclusion, follicular atrophy and apoptosis occurred in the ovaries and serum reproductive hormone levels were significantly changed during the brooding period of Zhedong white geese. COL3A1, COL1A2, GRIA1, RNF152, miR-192, and miR-194 may be important candidates for the regulation of brooding behaviour, with the mTOR signalling pathway playing a key role.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - S Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Zang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - B Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - G Liu
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - H Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Zhao
- Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
5
|
Granados-Aparici S, Yang Q, Clarke HJ. SMAD4 promotes somatic-germline contact during murine oocyte growth. eLife 2024; 13:RP91798. [PMID: 38819913 PMCID: PMC11142639 DOI: 10.7554/elife.91798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFβ) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFβ mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Research Institute, McGill University Health CentreMontrealCanada
- Present address: Cancer CIBER (CIBERONC)MadridSpain
- Present address: Pathology Department, Medical School, University of Valencia-INCLIVAValenciaSpain
| | - Qin Yang
- Research Institute, McGill University Health CentreMontrealCanada
| | - Hugh J Clarke
- Research Institute, McGill University Health CentreMontrealCanada
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill UniversityMontréalCanada
| |
Collapse
|
6
|
Chen SY, Wang TE, Lee WY, Yang YY, Lai HC, Matsuda F, Kosek H, Chen YT, Li SH, Tsai PS. Cre-LoxP and tamoxifen-induced deletion of ovarian quiescin sulfhydryl oxidase 2 showed disruption of ovulatory activity in mice. J Ovarian Res 2024; 17:66. [PMID: 38504307 PMCID: PMC10949576 DOI: 10.1186/s13048-024-01388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Quiescin sulfhydryl oxidase 2 (QSOX2) is a flavin adenine dinucleotide-dependent sulfhydryl oxidase that is known to be involved in protein folding, cell growth regulation, and redox state modification through oxidative activities. Earlier studies demonstrated the tissue and cellular localization of QSOX2 in the male reproductive tract, as well as the highly-regulated mechanism of QSOX2 protein synthesis and expression through the coordinated action of testosterone and epididymal-enriched amino acid, glutamate. However, the presence and the functions of QSOX2 in female reproduction are unknown. In this study, we applied the Cre-loxP gene manipulation system to generate the heterozygous and homozygous Qsox2 knockout mice and examined its effects on ovarian function. RESULTS We demonstrated that QSOX2 was detected in the follicle-supporting cells (granulosa and cumulus cells) of ovarian follicles of all stages but was absent in the corpus luteum, suggesting its supportive role in folliculogenesis. In comparison with reproductive organogenesis in wild-type mice, there was no difference in testicular and epididymal structure in male Qsox2 knockout; however, Qsox2 knockout disrupted the regular ovulation process in female mice as a drastic decrease in the formation of the corpus luteum was detected, and no pregnancy was achieved when mating males with homozygous Qsox2 knockout females. RNAseq analyses further revealed that Qsox2 knockout altered critical signaling pathways and genes that are responsible for maintaining ovarian functions. CONCLUSION Our data demonstrated for the first time that Qsox2 is critical for ovarian function in mice.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Wei-Yun Lee
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Ya-Yi Yang
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - Hong-Chun Lai
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Haruhiko Kosek
- Center for Integrative Medical Sciences (IMS), RIEKN, Yokohama, Kanagawa, 230-0045, Japan
| | - You-Tzung Chen
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, 10055, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, 25160, Tamsui, Taiwan
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
7
|
Shi S, Chu G, Zhang L, Yuan H, Madaniyati M, Zhou X, Wang L, Cai C, Pang W, Gao L, Yang G. Deubiquitinase UCHL1 regulates estradiol synthesis by stabilizing voltage-dependent anion channel 2. J Biol Chem 2023; 299:105316. [PMID: 37797697 PMCID: PMC10656229 DOI: 10.1016/j.jbc.2023.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.
Collapse
Affiliation(s)
- Shengjie Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Huan Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Mielie Madaniyati
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Liguang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.
| |
Collapse
|
8
|
Trimmer KA, Zhao P, Seemann J, Chen SY, Mondal S, Ben-Yakar A, Arur S. Spatial single-cell sequencing of meiosis I arrested oocytes indicates acquisition of maternal transcripts from the soma. Cell Rep 2023; 42:112544. [PMID: 37227820 PMCID: PMC10592488 DOI: 10.1016/j.celrep.2023.112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal RNAs are stored from minutes to decades in oocytes throughout meiosis I arrest in a transcriptionally quiescent state. Recent reports, however, propose a role for nascent transcription in arrested oocytes. Whether arrested oocytes launch nascent transcription in response to environmental or hormonal signals while maintaining the meiosis I arrest remains undetermined. We test this by integrating single-cell RNA sequencing, RNA velocity, and RNA fluorescence in situ hybridization on C. elegans meiosis I arrested oocytes. We identify transcripts that increase as the arrested meiosis I oocyte ages, but rule out extracellular signaling through ERK MAPK and nascent transcription as a mechanism for this increase. We report transcript acquisition from neighboring somatic cells as a mechanism of transcript increase during meiosis I arrest. These analyses provide a deeper view at single-cell resolution of the RNA landscape of a meiosis I arrested oocyte and as it prepares for oocyte maturation and fertilization.
Collapse
Affiliation(s)
- Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Adela Ben-Yakar
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Crozet F, Letort G, Bulteau R, Da Silva C, Eichmuller A, Tortorelli AF, Blévinal J, Belle M, Dumont J, Piolot T, Dauphin A, Coulpier F, Chédotal A, Maître JL, Verlhac MH, Clarke HJ, Terret ME. Filopodia-like protrusions of adjacent somatic cells shape the developmental potential of oocytes. Life Sci Alliance 2023; 6:e202301963. [PMID: 36944420 PMCID: PMC10029974 DOI: 10.26508/lsa.202301963] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.
Collapse
Affiliation(s)
- Flora Crozet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Paris, France
| | - Rose Bulteau
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Christelle Da Silva
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adrien Eichmuller
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | | | - Morgane Belle
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Julien Dumont
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tristan Piolot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Aurélien Dauphin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Fanny Coulpier
- Genomics Core Facility, Institut de Biologie de l'ENS, Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alain Chédotal
- Institut de la Vision, UMRS968/UMR7210/UM80, Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3215, INSERM U934, Paris, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
10
|
Liao X, Wu L, Yin D, Tian D, Zhou C, Liu J, Li S, Zhou J, Nie Y, Liao H, Peng C. The role of zinc in follicular development. Mol Biol Rep 2023; 50:4527-4534. [PMID: 36848006 DOI: 10.1007/s11033-023-08331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Follicles consist of specialized somatic cells that encase a single oocyte. Follicle development is a process regulated by a variety of endocrine, paracrine, and secretory factors that work together to select follicles for ovulation. Zinc is an essential nutrient for the human body and is involved in many physiological processes, such as follicle development, immune response, homeostasis, oxidative stress, cell cycle progression, DNA replication, DNA damage repair, apoptosis, and aging. Zinc deficiency can lead to blocked oocyte meiotic process, cumulus expansion, and follicle ovulation. In this mini-review, we summarize the the role of zinc in follicular development.
Collapse
Affiliation(s)
- Xingyue Liao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Liujianxiong Wu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dan Yin
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dewei Tian
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Cuilan Zhou
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Suyun Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Yulin Nie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Hongqing Liao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China.
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Sun H, Sun G, Zhang H, An H, Guo Y, Ge J, Han L, Zhu S, Tang S, Li C, Xu C, Guo X, Wang Q. Proteomic Profiling Reveals the Molecular Control of Oocyte Maturation. Mol Cell Proteomics 2022; 22:100481. [PMID: 36496143 PMCID: PMC9823227 DOI: 10.1016/j.mcpro.2022.100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/31/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1-Cullin-Fbox pathway and an increase in mRNA decay-related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.
Collapse
Affiliation(s)
- Hongzheng Sun
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Guangyi Sun
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shoubin Tang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China; Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Let-7a mimic transfection reduces chemotherapy-induced damage in a mouse ovarian transplantation model. Sci Rep 2022; 12:10863. [PMID: 35760952 PMCID: PMC9237019 DOI: 10.1038/s41598-022-14926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological approaches offer a non-invasive and promising option for fertility preservation in young female cancer patients undergoing gonadotoxic therapy. The GnRH-agonists are the only clinically available drugs in this indication, but their use and mechanisms of protection are still controversial. Recently, we have investigated new targeted drugs based on microRNA (miRNA) replacement therapy, and have identified the let-7a miRNA as candidate for fertility preservation strategies. Here, the effect of let-7a replacement during chemotherapy exposure on follicular growth and oocyte maturation capacity was investigated using a mouse ovarian-kidney transplantation model. Newborn mouse ovaries were cultured under different conditions; control, chemotherapy exposure (4-hydroperoxycyclophosphamide, 4-HC), and co-treatment with 4-HC and let-7a mimic transfection (4-HC + let-7a). The ovaries were then transplanted under the kidney capsule of recipient mice and follicular growth, survival, and oocyte in vitro maturation were assessed after 3 weeks. The results showed that the follicular pool was highest in the control group but higher in the 4-HC + let-7a group than the 4-HC group. DNA-damage/apoptosis ratios were higher in all 4-HC-exposed groups compared to control but were reduced in the 4-HC + let-7a group. In addition, the post-transplantation oocyte in vitro maturation rate was higher in the 4-HC + let-7a group compared to the 4-HC group, suggesting better oocyte quality. These results provide new information regarding the beneficial effects of let-7a replacement against chemotherapy-induced ovarian damage and open new perspectives for future in vivo applications.
Collapse
|
15
|
Granados-Aparici S, Volodarsky-Perel A, Yang Q, Anam S, Tulandi T, Buckett W, Son WY, Younes G, Chung JT, Jin S, Terret MÉ, Clarke HJ. MYO10 promotes transzonal projection (TZP)-dependent germ line-somatic contact during mammalian folliculogenesis. Biol Reprod 2022; 107:474-487. [PMID: 35470858 PMCID: PMC9382396 DOI: 10.1093/biolre/ioac078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Granulosa cells of growing ovarian follicles elaborate filopodia-like structures termed transzonal projections (TZPs) that supply the enclosed oocyte with factors essential for its development. Little is known, however, of the mechanisms underlying the generation of TZPs. We show in mouse and human that filopodia, defined by an actin backbone, emerge from granulosa cells in early-stage primary follicles and that actin-rich TZPs become detectable as soon as a space corresponding to the zona pellucida appears. mRNA encoding Myosin10 (MYO10), a motor protein that accumulates at the base and tips of filopodia and has been implicated in their initiation and elongation, is present in granulosa cells and oocytes of growing follicles. MYO10 protein accumulates in foci located mainly between the oocyte and innermost layer of granulosa cells, where it co-localizes with actin. In both mouse and human, the number of MYO10 foci increases as oocytes grow, corresponding to the increase in the number of actin-TZPs. RNAi-mediated depletion of MYO10 in cultured mouse granulosa cell-oocyte complexes is associated with a 52% reduction in the number of MYO10 foci and a 28% reduction in the number of actin-TZPs. Moreover, incubation of cumulus-oocyte complexes in the presence of epidermal growth factor, which triggers a 93% reduction in the number of actin-TZPs, is associated with a 55% reduction in the number of MYO10 foci. These results suggest that granulosa cells possess an ability to elaborate filopodia, which when directed towards the oocyte become actin-TZPs, and that MYO10 increases the efficiency of formation or maintenance of actin-TZPs.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Alexander Volodarsky-Perel
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Qin Yang
- Research Institute of the McGill University Health Center, Montreal, Canada
| | - Sibat Anam
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Togas Tulandi
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Weon-Young Son
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Grace Younes
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada
| | - Jin-Tae Chung
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - Shaoguang Jin
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | | | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Center, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Tanbakooei S, Haramshahi SMA, Vahabzadeh G, Barati M, Katebi M, Golab F, Shetabi Q, Niknam N, Roudbari L, Rajabi Fomeshi M, Amini Moghadam S. Ovarian Stem Cells Differentiation into Primary Oocytes Using Follicle Stimulating Hormone, Basic Fibroblast Growth Factor, and Neurotrophin 3. J Reprod Infertil 2022; 22:241-250. [PMID: 34987985 PMCID: PMC8669404 DOI: 10.18502/jri.v22i4.7649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background: In vitro obtaining oocytes can be an appropriate alternative for patients with gonadal insufficiency or cancer survivors. The purpose of the current research was isolating stem cells from ovarian cortical tissue as well as evaluating the effectiveness of follicle stimulating hormone (FSH), basic fibroblast growth factor (bFGF), and neurotrophin 3 (NT3) in differentiating to oocyte-like cells. Methods: A human ovary was dissected and cortical tissue pieces were cultured for cell isolation. Isolated cells were divided into 8 groups (3 cases in each group) of control, FSH, NT3, bFGF, FSH+NT3, FSH+bFGF, NT3+bFGF, and FSH+NT3+ bFGF. Pluripotency specific gene (OCT4-A and Nanog), initial germ cells (c-KIT and VASA) and PF growth initiators (GDF-9 and Lhx-8) were evaluated by qRTPCR. Experiments were performed in triplicate and there were 3 samples in each group. The results were analyzed using one-way ANOVA and p-value less than 0.05 was considered statistically significant. Results: Flow cytometry results showed that cells isolated from the ovarian cortex expressed markers of pluripotency. The results showed that the expression of Nanog, OCT4, GDF-9 and VASA was significantly increased in FSH+NT3 group, while treatment with bFGF caused significant expression of c-KIT and Lhx-8 (p<0.05). Also, according to the results, isolated cells treated with NT3 significantly increased c-KIT expression. Conclusion: According to our results, the ovarian cortex cells could be differentiated into primordial follicles if treated with the proper combination of FSH, bFGF, and NT3. These findings provided a new perspective for the future of in vitro gamete proudest.
Collapse
Affiliation(s)
- Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Qazal Shetabi
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Narges Niknam
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Roudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Rajabi Fomeshi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Amini Moghadam
- Department of Gynecology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Li D, Xu W, Wang X, Dang Y, Xu L, Lu G, Chan WY, Leung PC, Zhao S, Qin Y. lncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:1092-1106. [PMID: 34786213 PMCID: PMC8571528 DOI: 10.1016/j.omtn.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/25/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The list of long non-coding RNAs (lncRNAs) that participate in the function of ovarian granulosa cells (GCs) is rapidly expanding, but the mechanisms through which lncRNAs regulate GC function are not yet fully understood. Here, we recognized a minimally expressed lncRNA RP4-545C24.1 (which we named DDGC) in GCs from patients with biochemical premature ovarian insufficiency (bPOI). We further explored the role of lncRNA DDGC in GC function and its contribution to the development of bPOI. Mechanistically, silencing DDGC downregulated RAD51 by competitively binding with miR-589-5p, and this resulted in significant inhibition of DNA damage repair capacity. In addition, decreased expression of DDGC promoted ubiquitin-mediated degradation of Wilms tumor 1 (WT1) protein through interactions with heat shock protein 90 (HSP90), which led to aberrant differentiation of GCs. Moreover, DDGC was able to ameliorate the etoposide-induced DNA damage and apoptosis in vivo. Taken together, these findings provide new insights into the contribution of lncRNAs in POI pathogenesis.
Collapse
Affiliation(s)
- Duan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Lan Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Correspondence: Yingying Qin, PhD, Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
18
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
19
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
20
|
Hainaut M, Clarke HJ. Germ cells of the mammalian female: A limited or renewable resource? Biol Reprod 2021; 105:774-788. [PMID: 34114006 DOI: 10.1093/biolre/ioab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/12/2022] Open
Abstract
In many non-mammalian organisms, a population of germ-line stem cells supports continuing production of gametes during most or all the life of the individual, and germ-line stem cells are also present and functional in male mammals. Traditionally, however, they have been thought not to exist in female mammals, who instead generate all their germ cells during fetal life. Over the last several years, this dogma has been challenged by several reports, while supported by others. We describe and compare these conflicting studies with the aim of understanding how they came to opposing conclusions. We first consider studies that, by examining marker-gene expression, the fate of genetically marked cells, and consequences of depleting the oocyte population, addressed whether ovaries of post-natal females contain oogonial stem cells (OSC) that give rise to new oocytes. We next discuss whether ovaries contain cells that, even if inactive under physiological conditions, nonetheless possess OSC properties that can be revealed through cell-culture. We then examine studies of whether cells harvested after long-term culture of cells obtained from ovaries can, following transplantation into ovaries of recipient females, give rise to oocytes and offspring. Finally, we note studies where somatic cells have been re-programmed to acquire a female germ-cell fate. We conclude that the weight of evidence strongly supports the traditional interpretation that germ-line stem cells do not exist post-natally in female mammals. However, the ability to generate germ cells from somatic cells in vitro establishes a method to generate new gametes from cells of post-natal mammalian females.
Collapse
Affiliation(s)
- Mathilde Hainaut
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University and Research Institute of the McGill University Health Centre, Montreal Canada
| |
Collapse
|
21
|
LncRNA ZNF674-AS1 regulates granulosa cell glycolysis and proliferation by interacting with ALDOA. Cell Death Discov 2021; 7:107. [PMID: 33993190 PMCID: PMC8124069 DOI: 10.1038/s41420-021-00493-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Granulosa cell (GC) is a critical somatic component of ovarian follicles to support oocyte development, while the regulatory role of long noncoding RNA (lncRNA) in GCs is largely unknown. Here, we identified a down-regulated lncRNA ZNF674-AS1 in GCs from patients with biochemical premature ovarian insufficiency (bPOI), and its expression correlates with serum levels of clinical ovarian reserve indicators. Functional experiments showed that ZNF674-AS1 is induced by energy stress, and regulates the proliferation and glycolysis of GCs, which possibly leads to follicular dysfunction. Mechanistically, low-expressed ZNF674-AS1 reduced the enzymatic activity of aldolase A (ALDOA), concomitant with promoting the association between ALDOA and v-ATPase to activate the lysosome localized AMP-activated protein kinase (AMPK). These findings identified a new lncRNA–ALDOA complex through which ZNF674-AS1 exerts its functions, expanding the understanding of epigenetic regulation of GCs function and POI pathogenesis.
Collapse
|
22
|
Vo KCT, Kawamura K. In Vitro Activation Early Follicles: From the Basic Science to the Clinical Perspectives. Int J Mol Sci 2021; 22:ijms22073785. [PMID: 33917468 PMCID: PMC8038686 DOI: 10.3390/ijms22073785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
Development of early follicles, especially the activation of primordial follicles, is strictly modulated by a network of signaling pathways. Recent advance in ovarian physiology has been allowed the development of several therapies to improve reproductive outcomes by manipulating early folliculogenesis. Among these, in vitro activation (IVA) has been recently developed to extend the possibility of achieving genetically related offspring for patients with premature ovarian insufficiency and ovarian dysfunction. This method was established based on basic science studies of the intraovarian signaling pathways: the phosphoinositide 3-kinase (PI3K)/Akt and the Hippo signaling pathways. These two pathways were found to play crucial roles in folliculogenesis from the primordial follicle to the early antral follicle. Following the results of rodent experiments, IVA was implemented in clinical practice. There have been multiple recorded live births and ongoing pregnancies. Further investigations are essential to confirm the efficacy and safety of IVA before used widely in clinics. This review aimed to summarize the published literature on IVA and provide future perspectives for its improvement.
Collapse
|
23
|
Zhang Y, Zhou X, Zhu Y, Wang H, Xu J, Su Y. Current mechanisms of primordial follicle activation and new strategies for fertility preservation. Mol Hum Reprod 2021; 27:6128515. [PMID: 33538812 DOI: 10.1093/molehr/gaab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged <40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaomei Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ye Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hanbin Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yiping Su
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| |
Collapse
|
24
|
Yao G, Kong Y, Yang G, Kong D, Xu Y, He J, Xu Z, Bai Y, Fan H, He Q, Sun Y. Lnc-GULP1-2:1 affects granulosa cell proliferation by regulating COL3A1 expression and localization. J Ovarian Res 2021; 14:16. [PMID: 33472700 PMCID: PMC7816396 DOI: 10.1186/s13048-021-00769-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/13/2021] [Indexed: 01/23/2023] Open
Abstract
Backgrounds Long non-coding RNA is a novel group of non-protein coding transcripts over 200 nt in length. Recent studies have found that they are widely involved in many pathological and physiological processes. In our previous study, we found that lnc-GULP1–2:1 was significantly down-regulated in the ovarian cortical tissue of patients with primary ovarian insufficiency and predicted that lnc-GULP1–2:1 has a regulatory effect on COL3A1. Results In this study, we found that lnc-GULP1–2:1 was mainly localized in the cytoplasm of luteinized granulosa cells. The expression of lnc-GULP1–2:1 was lower in patients with diminished ovarian reserve but substantially elevated in patients with polycystic ovary syndrome. Overexpression of lnc-GULP1–2:1 in KGN cells significantly inhibited cell proliferation, likely through cell cycle related genes CCND2 and p16. Moreover, lnc-GULP1–2:1 expression was positively correlated with the level of COL3A in luteinized granulosa cells from patients with different ovarian functions as well as in multiple cell lines. Overexpression of lnc-GULP1–2:1 in KGN cells promoted the expression of COL3A1 and its translocation into the nucleus. Consistently, silencing COL3A1 in KGN cells also significantly inhibited cell proliferation. Conclusions Lnc-GULP1–2:1 affects the proliferation of granulosa cells by regulating the expression and localization of COL3A1 protein, and may participate in the regulation of ovarian follicle development. This study will provide new insight into molecular mechanisms underlying ovarian follicular development, which will help generate novel diagnostic and therapeutic strategies for diseases related to ovarian follicular development disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00769-1.
Collapse
Affiliation(s)
- Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yue Kong
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deqi Kong
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yijiang Xu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiahuan He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ziwen Xu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yucheng Bai
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huiying Fan
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qina He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
lncRNA GCAT1 is involved in premature ovarian insufficiency by regulating p27 translation in GCs via competitive binding to PTBP1. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:132-141. [PMID: 33335798 PMCID: PMC7733005 DOI: 10.1016/j.omtn.2020.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Dysfunction of granulosa cells (GCs) leading to follicle atresia has been extensively studied as a major cause of premature ovarian insufficiency (POI), but the regulatory role of long non-coding RNAs (lncRNAs) in this process is still poorly understood. Here, we show that the lncRNA LINC02690 or GCAT1 (granulosa cell-associated transcript 1) is downregulated in GCs from patients with biochemical POI (bPOI), and we show a significant correlation between downregulated GCAT1 and serum levels of follicle-stimulating hormone and anti-Müllerian hormone. Downregulation of GCAT1 inhibited G1/S cell cycle progression and thus inhibited the proliferation of GCs. Mechanistically, we show that GCAT1 competes with cyclin-dependent kinase inhibitor 1B (CDKN1B) mRNA for polypyrimidine tract-binding protein 1 (PTBP1) binding, and thus decreased GCAT1 might promote PTBP1 binding to CDKN1B mRNA and thereby initiate CDKN1B protein (p27) translation. Together, our results suggest that downregulation of GCAT1 under conditions of bPOI inhibits the proliferation of GCs through PTBP1-dependent p27 regulation, thus suggesting a novel form of lncRNA-mediated epigenetic regulation of GC function that contributes to the pathogenesis of POI.
Collapse
|
26
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, Luo A, Wu T, Zhang J, Wu M, Dai J, Shen W, Zhang F, Ding W, Wang S. Ovarian Dysfunction Induced by Chronic Whole-Body PM2.5 Exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000845. [PMID: 32686359 DOI: 10.1002/smll.202000845] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) pollution arouses public health concerns over the world. Increasing epidemiologic evidence suggests that exposure to ambient airborne PM2.5 increases the risk of female infertility. However, relatively few studies have systematically explored the harmful effect of chronic PM2.5 exposure on ovarian function and the underlying mechanisms. In this study, female C57BL/6J mice are exposed to filtered air or urban airborne PM2.5 for 4 months through a whole-body exposure system. It is found that PM2.5 exposure significantly caused the alteration of estrus cycles, reproductivity, hormone levels, and ovarian reserve. The granulosa cell apoptosis via the mitochondria dependent pathway contributes to the follicle atresia. With RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure are mainly enriched in ovarian steroidogenesis, reactive oxygen species and oxidative phosphorylation pathways. Furthermore, it is found that increased PM2.5 profoundly exacerbated ovarian oxidative stress and inflammation in mice through the NF-κB/IL-6 signaling pathway. Notably, dietary polydatin (PD) supplement has protective effect in mice against PM2.5-induced ovarian dysfunction.These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for ovarian dysfunction through mitochondria-dependent and NF-κB/IL-6-mediated pathway, and PD may serve as a pharmaceutic candidate for air pollution-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunyan Wu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
28
|
Lu X, Bao H, Cui L, Zhu W, Zhang L, Xu Z, Man X, Chu Y, Fu Q, Zhang H. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway. Stem Cell Res Ther 2020; 11:268. [PMID: 32620136 PMCID: PMC7333437 DOI: 10.1186/s13287-020-01784-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies of primary ovarian insufficiency (POI) have focused on granulosa cells (GCs) and ignored the role of theca-interstitial cells (TICs). This study aims to explore the mechanism of the protective effects of human umbilical cord-derived mesenchymal stem cells (hUMSCs) on ovarian function in POI rats by regulating autophagy of TICs. Methods The POI model was established in rats treated with cisplatin (CDDP). The hUMSCs were transplanted into POI rats by tail vein. Enzyme-linked immunosorbent assay (ELISA) analysis, hematoxylin and eosin (HE) staining, and immunohistochemistry were used to measure the protective effects of hUMSCs. The molecular mechanisms of injury and repairment of TICs were assessed by immunofluorescence, transmission electron microscope (TEM), flow cytometry (FCM), western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Results In vivo, hUMSC transplantation restored the ovarian function and alleviated the apoptosis of TICs in POI rats. In vitro, hUMSCs reduced the autophagy levels of TICs by reducing oxidative stress and regulating AMPK/mTOR signaling pathway, thereby alleviating the apoptosis of TICs. Conclusion This study indicates that hUMSCs protected ovarian function in POI by regulating autophagy signaling pathway AMPK/mTOR.
Collapse
Affiliation(s)
- Xueyan Lu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Linlu Cui
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenqian Zhu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianshuang Zhang
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zheng Xu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Yongli Chu
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Qiang Fu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
29
|
DNA fragmentation index, pAKT and pERK1/2 in cumulus cells are related to oocyte competence in patients undergoing in vitro fertilization programme. ZYGOTE 2019; 27:350-354. [PMID: 31411131 DOI: 10.1017/s0967199419000248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Activated pERK1/2 and pAKT are key players in supporting cell survival and proliferation pathways. Translocation of pERK1/2 into the nucleus, where it interacts with transcription factors and DNA itself, is instrumental in exerting an anti-apoptotic effect. In this study, pAKT levels, pERK1/2 nuclear localization and DNA fragmentation index (DFI) in cumulus cells of single cumulus-oocyte complexes of patients undergoing in vitro fertilization programmes were evaluated and correlated with the clinical outcome of the related embryos. For a positive clinical outcome of blastocyst development, pERK1/2 nuclear localization and DFI value had a significant inverse relationship, whereas the former and the intracellular accumulation of pAKT had a significant direct relationship. This relationship was not observed for the negative clinical outcome of the arrested embryos. Moreover, intracellular accumulation of pAKT and DFI value had a significant inverse relationship in all samples examined. The obtained data suggest that the intranuclear relocation of pERK1/2, along with an enhanced intracellular accumulation of pAKT, may exert a survival effect and increase cell viability, therefore providing a novel marker tool to choose the best oocyte to be fertilized and submitted to an intracytoplasmic sperm injection cycle.
Collapse
|
30
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
31
|
D’Occhio MJ, Baruselli PS, Campanile G. Metabolic health, the metabolome and reproduction in female cattle: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1600385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michael J. D’Occhio
- School of Life and Environmental Sciences, The University of Sydney, Camden, Australia
| | - Pietro S. Baruselli
- Departamento de Reproducao Animal (VRA), University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Campanile
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
32
|
Almonacid M, Terret ME, Verlhac MH. Control of nucleus positioning in mouse oocytes. Semin Cell Dev Biol 2018; 82:34-40. [DOI: 10.1016/j.semcdb.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
|
33
|
Hassanpour A, Talaei-Khozani T, Kargar-Abarghouei E, Razban V, Vojdani Z. Decellularized human ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated protocol, as a natural three-dimensional scaffold for construction of bioengineered ovaries. Stem Cell Res Ther 2018; 9:252. [PMID: 30257706 PMCID: PMC6158855 DOI: 10.1186/s13287-018-0971-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The increasing number of patients with ovarian insufficiency due to autoimmune disorders, genetic predisposition, or iatrogenic effects of treatment such as cancer therapies necessitates an urgent measure to find a safe and transplantable alternative ovary. A bioengineered ovary is one of the strategies on which the researchers have recently been working. An engineered ovary should be able to mimic the natural ovary aspects. Recent studies suggest that the decellularized organ-specific extracellular matrix-based scaffolds can serve as a native niche to bioengineering artificial organs. Therefore, we established a human decellularized ovarian scaffold based on a sodium lauryl ester sulfate (SLES)-treated process, as an optimized protocol. METHODS The human ovary samples were decellularized with 1% SLES for 48 h followed by DNase I in PBS for 24 h, and then thoroughly rinsed in PBS to remove the cell remnants and chemical reagents. Efficient cell removal was confirmed by DNA content analysis, hematoxylin and eosin, and Hoechst staining. Preservation assessment of the extracellular matrix structures was performed by immunohistochemistry, histological staining, and scanning electron microscopy. An MTT test was done to assess the in vitro scaffold's cytocompatibility, and finally in vivo studies were performed to evaluate the biocompatibility, bioactivity, and secretion functions of the ovarian grafts made of primary ovarian cells (POCs) on the decellularized scaffolds. RESULTS Evidence provided by SEM, histochemical, and immunohistochemical analyses showed that the ovarian extracellular matrix was preserved after decellularization. Moreover, MTT test indicated the suitable cytocompatibility of the scaffolds. The in vivo assessment showed that the POCs kept their viability and bioactivity, and reconstructed the primordial or primary follicle-like structures within the scaffolds after transplantation. Immunostaining characterized somatic cells that were capable of expressing steroid hormone receptors; also, as a marker of granulosa cell, inhibin-α immunostaining demonstrated these cells within the grafts. Additionally, hormone assessment showed that serum estradiol and progesterone levels were significantly higher in ovariectomized rats with ovarian cells-seeded grafts than those with or without decellularized scaffold grafts. CONCLUSIONS A human ovary-specific scaffold based on a SLES-decellularized protocol as a biomimicry of the natural ovarian niche can be an ideal scaffold used to reconstruct the ovary.
Collapse
Affiliation(s)
- Ashraf Hassanpour
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elias Kargar-Abarghouei
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Molecular Medicine Department, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Imam Hussain Square, Zand St, Shiraz, Fars 7134845794 Iran
| |
Collapse
|
34
|
Clarke HJ. History, origin, and function of transzonal projections: the bridges of communication between the oocyte and its environment. Anim Reprod 2018; 15:215-223. [PMID: 34178144 PMCID: PMC8202234 DOI: 10.21451/1984-3143-ar2018-0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Development and differentiation of a functional oocyte that following fertilization is
able to give rise to a new individual requires continuous physical contact with the supporting
somatic cells of the ovarian follicle. As the oocyte is surrounded by a thick extracellular
coat, termed the zona pellucida, this essential contact is mediated through
thin cytoplasmic filaments known as transzonal projections (TZPs) that project from the
somatic granulosa cells adjacent to the oocyte and penetrate through the zona pellucida
to reach the oocyte. Gap junctions assembled where the tips of the TZPs contact the
oocyte plasma membrane, and other contact-dependent signaling may also occur at these sites.
Here, I describe early studies of TZPs, which were first identified in the late 19th century,
discuss their similarities with classical filopodia, review their structure and function,
and compare two models that could account for their origin. Possible priorities and directions
for future studies close this contribution.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC, Canada
| |
Collapse
|
35
|
CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation. Sci Rep 2018; 8:6812. [PMID: 29717177 PMCID: PMC5931610 DOI: 10.1038/s41598-018-25187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
In many cell types, the length of the poly(A) tail of an mRNA is closely linked to its fate - a long tail is associated with active translation, a short tail with silencing and degradation. During mammalian oocyte development, two contrasting patterns of polyadenylation have been identified. Some mRNAs carry a long poly(A) tail during the growth stage and are actively translated, then become deadenylated and down-regulated during the subsequent stage, termed meiotic maturation. Other mRNAs carry a short tail poly(A) tail and are translationally repressed during growth, and their poly(A) tail lengthens and they become translationally activated during maturation. As well, a program of elimination of this ‘maternal’ mRNA is initiated during oocyte maturation. Here we describe a third pattern of polyadenylation: mRNAs are deadenylated in growing oocytes, become polyadenylated during early maturation and then deadenylated during late maturation. We show that the deadenylase, CNOT6, is present in cortical foci of oocytes and regulates deadenylation of these mRNAs, and that PUF-binding elements (PBEs) regulate deadenylation in mature oocytes. Unexpectedly, maintaining a long poly(A) tail neither enhances translation nor inhibits degradation of these mRNAs. Our findings implicate multiple machineries, more complex than previously thought, in regulating mRNA activity in oocytes.
Collapse
|
36
|
El-Hayek S, Yang Q, Abbassi L, FitzHarris G, Clarke HJ. Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication. Curr Biol 2018; 28:1124-1131.e3. [PMID: 29576478 DOI: 10.1016/j.cub.2018.02.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 01/11/2023]
Abstract
Germ cells develop in a microenvironment created by the somatic cells of the gonad [1-3]. Although in males, the germ and somatic support cells lie in direct contact, in females, a thick extracellular coat surrounds the oocyte, physically separating it from the somatic follicle cells [4]. To bypass this barrier to communication, narrow cytoplasmic extensions of the follicle cells traverse the extracellular coat to reach the oocyte plasma membrane [5-9]. These delicate structures provide the sole platform for the contact-mediated communication between the oocyte and its follicular environment that is indispensable for production of a fertilizable egg [8, 10-15]. Identifying the mechanisms underlying their formation should uncover conserved regulators of fertility. We show here in mice that these structures, termed transzonal projections (TZPs), are specialized filopodia whose number amplifies enormously as oocytes grow, enabling increased germ-soma communication. By creating chimeric complexes of genetically tagged oocytes and follicle cells, we demonstrate that follicle cells elaborate new TZPs that push through the extracellular coat to reach the oocyte surface. We further show that growth-differentiation factor 9, produced by the oocyte, drives the formation of new TZPs, uncovering a key yet unanticipated role for the germ cell in building these essential bridges of communication. Moreover, TZP number and germline-soma communication are strikingly reduced in reproductively aged females. Thus, the growing oocyte locally remodels follicular architecture to ensure that its developmental needs are met, and an inability of somatic follicle cells to respond appropriately to oocyte-derived cues may contribute to human infertility.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Qin Yang
- Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Laleh Abbassi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Département d'Obstétrique et de Gynécologie, Université de Montréal, 900 rue St-Denis, Montreal, QC H2X 0A9, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
37
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
38
|
Abstract
Analysis of the mechanisms that drive the growth and meiotic maturation of the female germ cell, the oocyte, has been greatly facilitated by the development of conditions that support these processes in vitro. Easily identified signposts of oocyte differentiation enable the ability of specific culture conditions to recapitulate normal oocyte development to be robustly assayed. Here we describe a technique for deriving complexes consisting of an oocyte surrounded by somatic granulosa cells from follicles and growing these granulosa cell-oocyte complexes in vitro. Such culture systems are useful for uncovering the principles of germ cell development and for improving our ability to preserve human and animal fertility through assisted reproduction.
Collapse
|
39
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 11/08/2022]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1–3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
|
40
|
Landry DA, Fortin C, Bellefleur AM, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA. Comparative analysis of granulosa cell gene expression in association with oocyte competence in FSH-stimulated Holstein cows. Reprod Fertil Dev 2017; 29:2324-2335. [DOI: 10.1071/rd16459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
Ovarian stimulation with exogenous FSH followed by FSH withdrawal or ‘coasting’ is an effective means of increasing the number of oocytes obtainable for the in vitro production of cattle embryos. However, the quality of the oocytes thus obtained varies considerably from one cow to the next. The aim of the present study was to gain a better understanding of the follicular conditions associated with low oocyte developmental competence. Granulosa cells from 94 Holstein cows in a commercial embryo production facility were collected following ovarian stimulation and coasting. Microarray analysis showed 120 genes expressed with a differential of at least 1.5 when comparing donors of mostly competent with donors of mostly incompetent oocytes. Using ingenuity pathway analysis, we revealed the main biological functions and potential upstream regulators that distinguish donors of mostly incompetent oocytes. These are involved in cell proliferation, apoptosis, lipid metabolism, retinol availability and insulin signalling. In summary, we demonstrated that differences in follicle maturity at collection could explain differences in oocyte competence associated with individual animals. We also revealed deficiencies in lipid metabolism and retinol signalling in granulosa cells from donors of mostly incompetent oocytes.
Collapse
|
41
|
Abstract
Recent discoveries on the delivery of small- and large-size molecules and organelles to the oocytes/eggs from external sources, such as surrounding somatic cells, body fluids, and sperm, change our understanding of female germ cells' (oocytes and eggs) self-containment and individuality. In this chapter, we will summarize present-day knowledge on sources and presumptive functions of different types of exogenous molecules and organelles delivered to the animal oocytes and eggs.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, The Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA.
| | - Jacek Z Kubiak
- CNRS UMR 6290, Cell Cycle Group, Institute of Genetics and Development of Rennes, Rennes, France.,University of Rennes 1, Faculty of Medicine, Rennes, France.,Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|