1
|
Kang X, Ma J, Cha H, Hansen HHWB, Chen X, Ta HT, Tian F, Nguyen NT, Klimenko A, Zhang J, Yuan D. Ultra-Stretchable Microfluidic Devices for Optimizing Particle Manipulation in Viscoelastic Fluids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61765-61773. [PMID: 39496575 DOI: 10.1021/acsami.4c15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Viscoelastic microfluidics leverages the unique properties of non-Newtonian fluids to manipulate and separate micro- or submicron particles. Channel geometry and dimension are crucial for device performance. Traditional rigid microfluidic devices require numerous iterations of fabrication and testing to optimize these parameters, which is time-consuming and costly. In this work, we developed a flexible microfluidic device using ultra-stretchable and biocompatible Flexdym material to overcome this issue. Our device allows for simultaneous modification of channel dimensions by external stretching. We fabricated a stretchable device with an initial square microchannel (30 μm × 30 μm), and the channel aspect ratio can be adjusted from 1 to 5 by external stretching. Next, the effects of aspect ratio, particle size, flow rate, and poly(ethylene oxide) (PEO) concentration that make the fluid viscoelastic on particle migration were investigated. Finally, we demonstrated the feasibility of our approach by testing channels with an aspect ratio of 3 for the separation of both particles and cells.
Collapse
Affiliation(s)
- Xiaoyue Kang
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jingtao Ma
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Xiangxun Chen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Hang T Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Fangbao Tian
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Alexander Klimenko
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Dan Yuan
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
2
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
3
|
Klein AK, Dietzel A. A Primer on Microfluidics: From Basic Principles to Microfabrication. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:17-35. [PMID: 33404675 DOI: 10.1007/10_2020_156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidic systems enable manipulating fluids in different functional units which are integrated on a microchip. This chapter describes the basics of microfluidics, where physical effects have a different impact compared to macroscopic systems. Furthermore, an overwiew is given on the microfabrication of these systems. The focus lies on clean-room fabrication methods based on photolithography and soft lithography. Finally, an outlook on advanced maskless micro- and nanofabrication methods is given. Special attention is paid to laser structuring processes.
Collapse
Affiliation(s)
- Ann-Kathrin Klein
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|