1
|
Da F, Guo J, Yao L, Gao Q, Jiao S, Miao X, Liu J. Pretreatment with metformin protects mice from whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:618-625. [PMID: 33912960 PMCID: PMC8273805 DOI: 10.1093/jrr/rrab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Metformin, a first-line oral drug for type II diabetes mellitus, not only reduces blood glucose levels, but also has many other biological effects. Recent studies have been conducted to determine the protective effect of metformin in irradiation injuries. However, the results are controversial and mainly focus on the time of metformin administration. In this study, we aimed to investigate the protective effect of metformin in BALB/c mice exposed to 6 Gy or 8 Gy of a 60Co source of γ-rays for total body irradiation (TBI). Survival outcomes were assessed following exposure to 8 Gy or 6 Gy TBI, and hematopoietic damage and intestinal injury were assessed after exposure to 6 Gy TBI. Metformin prolonged the survival of mice exposed to 8 Gy TBI and improved the survival rate of mice exposed to 6 Gy TBI only when administered before exposure to irradiation. Moreover, pretreatment with metformin reduced the frequency of micronuclei (MN) in the bone marrow of mice exposed to 6 Gy TBI. Pretreatment of metformin also protected the intestinal morphology of mice, reduced inflammatory response and decreased the number of apoptotic cells in intestine. In conclusion, we demonstrated that pretreatment with metformin could alleviate irradiation injury.
Collapse
Affiliation(s)
- Fei Da
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
- Pharmaceutical Preparation Section, The No. 967 Hospital of PLA Joint Logistics Support Force, Dalian 116041, China
| | - Juan Guo
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Lin Yao
- Department of Pharmaceutical chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an 710032, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Shengyuan Jiao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Xia Miao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Junye Liu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
2
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Vukmirovic D, Vo NTK, Seymour C, Rollo D, Mothersill C. Characterization of Radioprotective, Radiomitigative and Bystander Signaling Modulating Effects of Endogenous Metabolites - Phenylacetate, Ursodeoxycholate and Tauroursodeoxycholate - on HCT116 Human Colon Carcinoma Cell Line. Radiat Res 2019; 192:28-39. [PMID: 31058578 DOI: 10.1667/rr15323.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to ionizing radiation can cause depletion in stem cell reservoirs and lead to chronic injury processes that exacerbate carcinogenic and inflammatory responses. Therefore, radioprotective measures, against both acute and chronic biological effects of radiation, require frequent intake of nontoxic natural products, which have practical oral administration. The goal of this study was to characterize the radioprotective, radiomitigative and radiation-induced bystander effect-inhibiting properties of endogenous metabolites: phenylacetate, ursodeoxycholate and tauroursodeoxycholate. Compounds were administered pre- and postirradiation as well as in donor and recipient bystander flasks to analyze whether these might adequately protect against radiation injury as well as facilitate recovery from the exposures. The clonogenic HCT116 p53 wild-type cancer cell line in this study shares characteristics of stem cells, such as high reproductive viability, which is an effective marker to demonstrate compound effectiveness. Clonogenic assays were therefore used to characterize radioprotective, radiomitigative and bystander inhibiting properties of treatment compounds whereby cellular responses to radiation were quantified with macroscopic colony counts to measure cell survival in flasks. The results were statistically significant for phenylacetate and tauroursodeoxycholate when administered preirradiation, conferring radioprotection up to 2 Gy, whereas administration postirradiation and in bystander experiments did not confer radioprotection in vitro. These findings suggest that phenylacetate and tauroursodeoxycholate might be effective radioprotectors, although they possess no radiomitigative properties.
Collapse
Affiliation(s)
| | - Nguyen T K Vo
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | - Colin Seymour
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| | | | - Carmel Mothersill
- b Department of Biology, McMaster University, West, Hamilton, Ontario, Canada, L8S 4L8
| |
Collapse
|
4
|
Saadipoor A, Razzaghdoust A, Simforoosh N, Mahdavi A, Bakhshandeh M, Moghadam M, Abdollahi H, Mofid B. Randomized, double-blind, placebo-controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother Res 2018; 33:370-378. [PMID: 30427093 DOI: 10.1002/ptr.6230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Clinical potential of curcumin in radiotherapy (RT) setting is outstanding and of high interest. The main purpose of this randomized controlled trial (RCT) was to assess the beneficial role of nanocurcumin to prevent and/or mitigate radiation-induced proctitis in prostate cancer patients undergoing RT. In this parallel-group study, 64 eligible patients with prostate cancer were randomized to receive either oral nanocurcumin (120 mg/day) or placebo 3 days before and during the RT course. Acute toxicities including proctitis and cystitis were assessed weekly during the treatment and once thereafter using CTCAE v.4.03 grading criteria. Baseline-adjusted hematologic nadirs were also analyzed and compared between the two groups. The patients undergoing definitive RT were followed to evaluate the tumor response. Nanocurcumin was well tolerated. Radiation-induced proctitis was noted in 18/31 (58.1%) of the placebo-treated patients versus 15/33 (45.5%) of nanocurcumin-treated patients (p = 0.313). No significant difference was also found between the two groups with regard to radiation-induced cystitis, duration of radiation toxicities, hematologic nadirs, and tumor response. In conclusion, this RCT was underpowered to indicate the efficacy of nanocurcumin in this clinical setting but could provide a considerable new translational insight to bridge the gap between the laboratory and clinical practice.
Collapse
Affiliation(s)
- Afshin Saadipoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Razzaghdoust
- Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Simforoosh
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahdavi
- Department of Radiology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moghadam
- Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Mofid
- Urology and Nephrology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|