1
|
Bellvert A, Adrián-Serrano S, Macías-Hernández N, Toft S, Kaliontzopoulou A, Arnedo MA. The Non-Dereliction in Evolution: Trophic Specialisation Drives Convergence in the Radiation of Red Devil Spiders (Araneae: Dysderidae) in the Canary Islands. Syst Biol 2023; 72:998-1012. [PMID: 37474131 DOI: 10.1093/sysbio/syad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural selection plays a key role in deterministic evolution, as clearly illustrated by the multiple cases of repeated evolution of ecomorphological characters observed in adaptive radiations. Unlike most spiders, Dysdera species display a high variability of cheliceral morphologies, which has been suggested to reflect different levels of specialization to feed on isopods. In this study, we integrate geometric morphometrics and experimental trials with a fully resolved phylogeny of the highly diverse endemic species from the Canary Islands to 1) quantitatively delimit the different cheliceral morphotypes present in the archipelago, 2) test their association with trophic specialization, as reported for continental species, 3) reconstruct the evolution of these ecomorphs throughout the diversification of the group, 4) test the hypothesis of convergent evolution of the different morphotypes, and 5) examine whether specialization constitutes a case of evolutionary irreversibility in this group. We show the existence of 9 cheliceral morphotypes and uncovered their significance for trophic ecology. Further, we demonstrate that similar ecomorphs evolved multiple times in the archipelago, providing a novel study system to explain how convergent evolution and irreversibility due to specialization may be combined to shape phenotypic diversification in adaptive radiations.
Collapse
Affiliation(s)
- Adrià Bellvert
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Adrián-Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria Macías-Hernández
- Department of Animal Biology, Edaphology and Geology, Universidad de La Laguna, Tenerife, Canary Islands, Spain
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History, University of Helsinki, Finland
| | - Søren Toft
- Department of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Århus C, Denmark
| | - Antigoni Kaliontzopoulou
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Tamagnini D, Meloro C, Raia P, Maiorano L. Testing the occurrence of convergence in the craniomandibular shape evolution of living carnivorans. Evolution 2021; 75:1738-1752. [PMID: 33844288 PMCID: PMC8359831 DOI: 10.1111/evo.14229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Convergence consists in the independent evolution of similar traits in distantly related species. The mammalian craniomandibular complex constitutes an ideal biological structure to investigate ecomorphological dynamics and the carnivorans, due to their phenotypic variability and ecological flexibility, offer an interesting case study to explore the occurrence of convergent evolution. Here, we applied multiple pattern‐based metrics to test the occurrence of convergence in the craniomandibular shape of extant carnivorans. To this aim, we tested for convergence in many dietary groups and analyzed several cases of carnivoran convergence concerning either ecologically equivalent species or ecologically similar species of different body sizes described in the literature. Our results validate the occurrence of convergence in ecologically equivalent species in a few cases (as well as in the case of giant and red pandas), but almost never support the occurrence of convergent evolution in dietary categories of living carnivorans. Therefore, convergent evolution in this clade appears to be a rare phenomenon. This is probably the consequence of a complex interplay of one‐to‐many, many‐to‐one, and many‐to‐many relationships taking place between ecology, biomechanics, and morphology.
Collapse
Affiliation(s)
- Davide Tamagnini
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, University of Naples Federico II, Napoli, 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| |
Collapse
|
3
|
Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 2020; 10:12384. [PMID: 32709946 PMCID: PMC7381635 DOI: 10.1038/s41598-020-68448-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects' symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentially abundant features codified by the microbiota of fungus-growing insects suggest these communities occupying microhabitats that are characteristic of fungiculture. These features include metabolic pathways involved in lignocellulose breakdown, detoxification of plant secondary metabolites, metabolism of simple sugars, fungal cell wall deconstruction, biofilm formation, antimicrobials biosynthesis, and metabolism of diverse nutrients. Our results suggest that the microbiota could be functionally adapted to the fungiculture environment, codifying metabolic pathways potentially relevant to the fungus-growing insects' ecosystems functioning.
Collapse
|
4
|
Bribiesca R, Herrera‐Alsina L, Ruiz‐Sanchez E, Sánchez‐González LA, Schondube JE. Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: A phylogenetic approach. Ecol Evol 2019; 9:1623-1637. [PMID: 30847060 PMCID: PMC6392494 DOI: 10.1002/ece3.4785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 11/25/2022] Open
Abstract
Body mass has been considered one of the most critical organismal traits, and its role in many ecological processes has been widely studied. In hummingbirds, body mass has been linked to ecological features such as foraging performance, metabolic rates, and cost of flying, among others. We used an evolutionary approach to test whether body mass is a good predictor of two of the main ecological features of hummingbirds: their abundances and behavioral dominance. To determine whether a species was abundant and/or behaviorally dominant, we used information from the literature on 249 hummingbird species. For abundance, we classified a species as "plentiful" if it was described as the most abundant species in at least part of its geographic distribution, while we deemed a species to be "behaviorally dominant" when it was described as pugnacious (notably aggressive). We found that plentiful hummingbird species had intermediate body masses and were more phylogenetically related to each other than expected by chance. Conversely, behaviorally dominant species tended to have larger body masses and showed a random pattern of distribution in the phylogeny. Additionally, small-bodied hummingbird species were not considered plentiful by our definition and did not exhibit behavioral dominance. These results suggest a link between body mass, abundance, and behavioral dominance in hummingbirds. Our findings indicate the existence of a body mass range associated with the capacity of hummingbird species to be plentiful, behaviorally dominant, or to show both traits. The mechanisms behind these relationships are still unclear; however, our results provide support for the hypothesis that body mass is a supertrait that explains abundance and behavioral dominance in hummingbirds.
Collapse
Affiliation(s)
- Rafael Bribiesca
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Coordinación del Posgrado en Ciencias BiológicasUNAMMexico CityMexico
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
| | | | - Eduardo Ruiz‐Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y AgropecuariasUniversidad de GuadalajaraZapopanMéxico
| | - Luis A. Sánchez‐González
- Museo de Zoología “Alfonso L. Herrera”, Depto. de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Jorge E. Schondube
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
| |
Collapse
|
5
|
Chabrol O, Royer‐Carenzi M, Pontarotti P, Didier G. Detecting the molecular basis of phenotypic convergence. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olivier Chabrol
- Aix Marseille UnivCNRSCentrale MarseilleI2M Marseille France
| | | | - Pierre Pontarotti
- Aix Marseille UnivCNRSCentrale MarseilleI2M Marseille France
- Aix Marseille UnivIRD, APHMMEPHIIHU Méditerranée Infection Marseille France
| | - Gilles Didier
- Aix Marseille UnivCNRSCentrale MarseilleI2M Marseille France
| |
Collapse
|
6
|
Figueirido B. Phenotypic disparity of the elbow joint in domestic dogs and wild carnivores. Evolution 2018; 72:1600-1613. [PMID: 29766489 DOI: 10.1111/evo.13503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 11/27/2022]
Abstract
In this article, I use geometric morphometrics in 2D from a sample of 366 elbow joints to quantify phenotypic disparity in domestic dog breeds, in wild canids, and across the order Carnivora. The elbow joint is a well-established morphological indicator of forearm motion and, by extension, of functional adaptations toward locomotor or predatory behavior in living carnivores. The study of the elbow joint in domestic dogs allows the exploration of potential convergences between (i) pursuit predators and fast-running dogs, and (ii) ambush predators and fighting breeds. The results indicate that elbow shape disparity among domestic dogs exceeds than in wolves; it is comparable to the disparity of wild Caninae, but is significantly lower than the one observed throughout Canidae and Carnivora. Moreover, fast-running and fighting breeds are not convergent in elbow joint shape with extreme pursuit and ambush wild carnivores, respectively. The role of artificial selection and developmental constraints in shaping limb phenotypic disparity through the extremely fast evolution of the domestic dog is discussed in the light of this new evidence.
Collapse
Affiliation(s)
- Borja Figueirido
- Departamento de Ecología y Geología, Área de Paleontología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
7
|
Stange M, Aguirre-Fernández G, Salzburger W, Sánchez-Villagra MR. Study of morphological variation of northern Neotropical Ariidae reveals conservatism despite macrohabitat transitions. BMC Evol Biol 2018; 18:38. [PMID: 29587647 PMCID: PMC5870521 DOI: 10.1186/s12862-018-1152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. RESULTS We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. CONCLUSIONS Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.
Collapse
Affiliation(s)
- Madlen Stange
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland.
| | - Gabriel Aguirre-Fernández
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Marcelo R Sánchez-Villagra
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| |
Collapse
|