1
|
Suryadi H, Judono JJ, Putri MR, Eclessia AD, Ulhaq JM, Agustina DN, Sumiati T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon 2022; 8:e08865. [PMID: 35141441 PMCID: PMC8814692 DOI: 10.1016/j.heliyon.2022.e08865] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Lignocellulose is the most abundant biomass available on earth, including wood and agricultural wastes such as rice straw, corn cobs, and oil palm empty bunches. The biopolymer content in lignocellulose has a great potential as feedstock for producing industrial raw materials such as glucose, sorbitol, xylose, xylitol, and other pharmaceutical excipients. Currently, scientists and governments agree that the enzymatic delignification method is an environmentally friendly green method to be applied. This review attempts to explain the proper preparation of the enzymes laccase, lignin peroxidase, and manganese peroxidase, as well as the important factors influencing their activity. The recent applications of the enzymes for detoxification of hazardous substances, proper enzyme immobilization technique, and future prospect combination with DESs extraction of lignin are also discussed.
Collapse
Affiliation(s)
- Herman Suryadi
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Jessica J. Judono
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Merianda R. Putri
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Alma D. Eclessia
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Jiihan M. Ulhaq
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Dinar N. Agustina
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Triyani Sumiati
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
2
|
Angelova G, Brazkova M, Stefanova P, Blazheva D, Vladev V, Petkova N, Slavov A, Denev P, Karashanova D, Zaharieva R, Enev A, Krastanov A. Waste Rose Flower and Lavender Straw Biomass-An Innovative Lignocellulose Feedstock for Mycelium Bio-Materials Development Using Newly Isolated Ganoderma resinaceum GA1M. J Fungi (Basel) 2021; 7:jof7100866. [PMID: 34682287 PMCID: PMC8541479 DOI: 10.3390/jof7100866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, for the first time, the potential of rose flowers and lavender straw waste biomass was studied as feeding lignocellulose substrates for the cultivation of newly isolated in Bulgaria Ganoderma resinaceum GA1M with the objective of obtaining mycelium-based bio-composites. The chemical characterization and Fourier Transform Infrared (FTIR) spectroscopy established that the proximate composition of steam distilled lavender straw (SDLS) and hexane extracted rose flowers (HERF) was a serious prerequisite supporting the self-growth of mycelium bio-materials with improved antibacterial and aromatic properties. The basic physico-mechanical properties of the developed bio-composites were determined. The apparent density of the mycelium HERF-based bio-composites (462 kg/m3) was higher than that of the SDLS-based bio-composite (347 kg/m3) and both were much denser than expanded polystyren (EPS), lighter than medium-density fiber board (MDF) and oriented strand board (OSB) and similar to hempcrete. The preliminary testing of their compressive behavior revealed that the compressive resistance of SDLS-based bio-composite was 718 kPa, while for HERF-based bio-composite it was 1029 kPa and both values are similar to the compressive strength of hempcrete with similar apparent density. Water absorbance analysis showed, that both mycelium HERF- and SDLS-based bio-composites were hydrophilic and further investigations are needed to limit the hydrophilicity of the lignocellulose fibers, to tune the density and to improve compressive resistance.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
- Correspondence:
| | - Petya Stefanova
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Veselin Vladev
- Department of Mathematics, Physics and Information Technologies, Faculty of Economics, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (N.P.); (A.S.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (N.P.); (A.S.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., 1113 Sofia, Bulgaria;
| | - Roumiana Zaharieva
- Department of Building Materials and Insulation, Faculty of Structural Engineering, University of Architecture, Civil Engineering and Geodesy, 1046 Sofia, Bulgaria;
| | | | - Albert Krastanov
- Department of Biotechnology, University of Food Technology, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (P.S.); (A.K.)
| |
Collapse
|
3
|
Angelova GV, Brazkova MS, Krastanov AI. Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review. ACTA ACUST UNITED AC 2021; 76:431-442. [PMID: 34252997 DOI: 10.1515/znc-2021-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
The agricultural waste with lignocellulose origin is considered to be one of the major environmental pollutants which, because of their high nutritional value, represent an extremely rich resource with significant potential for the production of value added bio-products. This review discusses the applications of higher fungi to upcycle abundant agricultural by-products into more sustainable materials and to promote the transition to a circular economy. It focuses on the main factors influencing the properties and application of mycelium composites - the feedstock, the basidiomycete species and their interaction with the feedstock. During controlled solid state cultivation on various lignocellulose substrates, the basidiomycetes of class Agaricomycetes colonize their surfaces and form a three-dimensional mycelium net. Fungal mycelium secretes enzymes that break down lignocellulose over time and are partially replaced by mycelium. The mycelium adheres to the residual undegraded substrates resulting in the formation of a high-mechanical-strength bio-material called a mycelium based bio-composite. The mycelium based bio-composites are completely natural, biodegradable and can be composted after their cycle of use is completed. The physicochemical, mechanical, and thermodynamic characteristics of mycelium based bio-composites are competitive with those of synthetic polymers and allow them to be successfully used in the construction, architecture, and other industries.
Collapse
Affiliation(s)
- Galena V Angelova
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| | - Mariya S Brazkova
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| | - Albert I Krastanov
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| |
Collapse
|