1
|
Maccarrone M. Phytocannabinoids and endocannabinoids: different in nature. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00957-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Cannabis is one of the earliest cultivated plants, of which Cannabis sativa and Cannabis indica are the most widespread and best characterized species. Their extracts contain (phyto)cannabinoids (pCBs) of therapeutic interest, such as Δ9-tetrahydrocannabinol and cannabidiol, along with many other compounds, so that there is no “one cannabis” but several mixtures even from the same plant. This complexity is mirrored, or even exceeded, by the complexity of the molecular targets that pCBs find in our body, most of which belong to the so-called “endocannabinoid (eCB) system”. Here, we describe the major pCBs and the main components of the eCB system to appreciate their differences and mutual interactions, as well as the potential of using pCB/eCB-based drugs as novel therapeutics to treat human diseases, both in the central nervous system and at the periphery. Moreover, we address the question of the evolution of pCBs and eCBs, showing that the latter compounds were the first to appear in nature, and that the former substances took a few million years to mimic the three-dimensional structures of the latter, and hence their biological activity in our body.
Graphic abstract
Collapse
|
2
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
3
|
Navaratne PV, Wilkerson JL, Ranasinghe KD, Semenova E, Felix JS, Ghiviriga I, Roitberg A, McMahon LR, Grenning AJ. Axially Chiral Cannabinols: A New Platform for Cannabinoid-Inspired Drug Discovery. ChemMedChem 2020; 15:728-732. [PMID: 32061146 PMCID: PMC10173896 DOI: 10.1002/cmdc.202000025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Phytocannabinoids (and synthetic analogs thereof) are gaining significant attention as promising leads in modern medicine. Considering this, new directions for the design of phytocannabinoid-inspired molecules is of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural and unknown isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are two main factors directing our interest to these scaffolds: (a) ax-CBNs would have ground-state three-dimensionality; ligand-receptor interactions can be more significant with complimentary 3D-topology, and (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability. Herein we report a synthesis of ax-CBNs, examine physical properties experimentally and computationally, and perform a comparative analysis of ax-CBN and THC in mice behavioral studies.
Collapse
Affiliation(s)
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | | | - Evgeniya Semenova
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
4
|
Jung B, Lee JK, Kim J, Kang EK, Han SY, Lee HY, Choi IS. Synthetic Strategies for (-)-Cannabidiol and Its Structural Analogs. Chem Asian J 2019; 14:3749-3762. [PMID: 31529613 DOI: 10.1002/asia.201901179] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/13/2019] [Indexed: 12/14/2022]
Abstract
(-)-Cannabidiol ((-)-CBD), a non-psychoactive phytocannabinoid from Cannabis, and its structural analogs have received growing attention in recent years because of their potential therapeutic benefits, including neuroprotective, anti-epileptic, anti-inflammatory, anxiolytic, and anti-cancer properties. (-)-CBD and its analogs have been obtained mainly based on extraction from the natural source; however, the conventional extraction-based methods have some drawbacks, such as poor quality control along with purification difficulty. Chemical-synthetic strategies for (-)-CBD could tackle these issues, and, additionally, generate novel (-)-CBD analogs that exhibit advanced biological activities. This review concisely summarizes the historic and recent milestones in the synthetic strategies for (-)-CBD and its analogs.
Collapse
Affiliation(s)
| | - Jungkyu K Lee
- Department of Chemistry, Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Korea
| | - Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Eunhye K Kang
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | | | - Hee-Yoon Lee
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
5
|
Banister SD, Arnold JC, Connor M, Glass M, McGregor IS. Dark Classics in Chemical Neuroscience: Δ 9-Tetrahydrocannabinol. ACS Chem Neurosci 2019; 10:2160-2175. [PMID: 30689342 DOI: 10.1021/acschemneuro.8b00651] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabis ( Cannabis sativa) is the most widely used illicit drug in the world, with an estimated 192 million users globally. The main psychoactive component of cannabis is (-)- trans-Δ9-tetrahydrocannabinol (Δ9-THC), a compound with a diverse range of pharmacological actions. The unique and distinctive intoxication caused by Δ9-THC primarily reflects partial agonist action at central cannabinoid type 1 (CB1) receptors. Δ9-THC is an approved therapeutic treatment for a range of conditions, including chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis, and is being investigated in indications such as anorexia nervosa, agitation in dementia, and Tourette's syndrome. It is available as a regulated pharmaceutical in products such as Marinol, Sativex, and Namisol as well as in an ever-increasing range of unregistered medicinal and recreational cannabis products. While cannabis is an ancient medicament, contemporary use is embroiled in legal, scientific, and social controversy, much of which relates to the potential hazards and benefits of Δ9-THC itself. Robust contemporary debate surrounds the therapeutic value of Δ9-THC in different diseases, its capacity to produce psychosis and cognitive impairment, and the addictive and "gateway" potential of the drug. This review will provide a profile of the chemistry, pharmacology, and therapeutic uses of Δ9-THC as well as the historical and societal import of this unique, distinctive, and ubiquitous psychoactive substance.
Collapse
Affiliation(s)
- Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Science and Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Iain S. McGregor
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Science and School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Navaratne PV, Grenning AJ. Tetrahydrobenzochromene Synthesis Enabled by a Deconjugative Alkylation/Tsuji-Saegusa-Ito Oxidation on Knoevenagel Adducts. Org Lett 2018; 20:4566-4570. [PMID: 30009612 DOI: 10.1021/acs.orglett.8b01857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular and practical route to versatile cyano-1,3-dienes by a sequence involving deconjugative alkylation and "Tsuji-Saegusa-Ito oxidation" is reported. In this letter, the versatility of the products is also explored, including a route to benzochromene scaffolds common to many natural products.
Collapse
Affiliation(s)
- Primali V Navaratne
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Alexander J Grenning
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
7
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Rocha NB, Peniche-Amante R, Veras AB, Machado S, Budde H. Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats. Neurochem Res 2018; 43:1511-1518. [PMID: 29876791 DOI: 10.1007/s11064-018-2565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5, A.P. 96 Cordemex, C.P. 97310, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Health School, Polytechnic Institute of Porto, Porto, Portugal
| | - Rodrigo Peniche-Amante
- Coordinación de Psicología Organizacional, División de Estudios Profesionales, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Universidade Catolica Dom Bosco, Campo Grande, Mato Grosso Do Sul, Brazil
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Salgado de Oliveira University, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO), Rio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavík, Iceland.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
8
|
Mazzoccanti G, Ismail OH, D'Acquarica I, Villani C, Manzo C, Wilcox M, Cavazzini A, Gasparrini F. Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chem Commun (Camb) 2018; 53:12262-12265. [PMID: 29072720 DOI: 10.1039/c7cc06999e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the Inverted Chirality Columns Approach (ICCA) we have developed an enantioselective UHPSFC method to determine the enantiomeric excess (ee) of (-)-Δ9-THC in medicinal marijuana (Bedrocan®). The ee was high (99.73%), but the concentration of the (+)-enantiomer (0.135%) was not negligible, and it is worth a systematic evaluation of bioactivity.
Collapse
Affiliation(s)
- G Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|