1
|
Chan WY, Rudd D, van Oppen MJ. Spatial metabolomics for symbiotic marine invertebrates. Life Sci Alliance 2023; 6:e202301900. [PMID: 37202120 PMCID: PMC10200813 DOI: 10.26508/lsa.202301900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a soft- and hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
- Melbourne Centre for Nanofabrication, Clayton, Australia
| | - Madeleine Jh van Oppen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
2
|
He X, Gbiorczyk K, Jeleń HH. Can Volatiles Fingerprints be an Alternative to Isotope Ratio Mass Spectrometry in the Botanical Origin Determination of Spirits? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2637-2643. [PMID: 36701260 DOI: 10.1021/acs.jafc.2c08141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mass spectrometry based quasi-electronic nose using solid-phase microextraction to introduce volatiles directly to mass spectrometer without chromatographic separation (HS-SPME-MS) was used to discriminate 45 raw spirits produced from C3 (potato, rye, wheat) and C4 (corn, sorghum) plants. The samples were also subjected to isotope ratio mass spectrometry (IRMS), which unequivocally distinguished C3 from C4 samples; however, no clear differentiation was observed for C3 samples. On the contrary, HS-SPME-MS, which uses unresolved volatile compounds "fingerprints" in a form of ions of a given m/z range and various intensities provided excellent sample classification and prediction after OPLS-DA data processing verified also by the artificial neural network (ANN).
Collapse
Affiliation(s)
- Xi He
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | | | - Henryk H Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
3
|
He MJ, Pu W, Wang X, Zhang W, Tang D, Dai Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies. Front Oncol 2022; 12:891018. [PMID: 35924152 PMCID: PMC9340374 DOI: 10.3389/fonc.2022.891018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic heterogeneity of cancer contributes significantly to its poor treatment outcomes and prognosis. As a result, studies continue to focus on identifying new biomarkers and metabolic vulnerabilities, both of which depend on the understanding of altered metabolism in cancer. In the recent decades, the rise of mass spectrometry imaging (MSI) enables the in situ detection of large numbers of small molecules in tissues. Therefore, researchers look to using MSI-mediated spatial metabolomics to further study the altered metabolites in cancer patients. In this review, we examined the two most commonly used spatial metabolomics techniques, MALDI-MSI and DESI-MSI, and some recent highlights of their applications in cancer studies. We also described AFADESI-MSI as a recent variation from the DESI-MSI and compare it with the two major techniques. Specifically, we discussed spatial metabolomics results in four types of heterogeneous malignancies, including breast cancer, esophageal cancer, glioblastoma and lung cancer. Multiple studies have effectively classified cancer tissue subtypes using altered metabolites information. In addition, distribution trends of key metabolites such as fatty acids, high-energy phosphate compounds, and antioxidants were identified. Therefore, while the visualization of finer distribution details requires further improvement of MSI techniques, past studies have suggested spatial metabolomics to be a promising direction to study the complexity of cancer pathophysiology.
Collapse
Affiliation(s)
- Michelle Junyi He
- Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wenjun Pu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Xi Wang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- Guangxi Key Laboratory of Metabolic Disease Research, Central Laboratory of Guilin, 924st Hospital, Guilin, China
- *Correspondence: Yong Dai,
| |
Collapse
|
4
|
Hamilton BR, Chan W, Cheney KL, Sullivan RKP, Floetenmeyer M, Garson MJ, Wepf R. Cryo-ultramicrotomy and Mass Spectrometry Imaging Analysis of Nudibranch Microstructures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:592-597. [PMID: 35084175 DOI: 10.1021/jasms.1c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, we investigate the presence of latrunculin A in the outer rim of a nudibranch Chromodoris kuiteri and show that by combining ultrathin cryosection methods with MALDI MSI we can achieve improved lateral (x and y) resolution and very high resolution in the z dimension by virtue of the ultrathin 200 nm thin cryosections. We also demonstrate that a post ionization laser increases sensitivity. Recent advances in MALDI source design have improved the lateral resolution (x and y) and sensitivity during MSI. Taken together, very high z resolution, from ultrathin sections, and improved lateral (x and y) resolution will allow for subcellular molecular imaging with the potential for subcellular 3D volume reconstruction.
Collapse
Affiliation(s)
- Brett R Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Weili Chan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Robert K P Sullivan
- Queensland Brain Institute, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | - Roger Wepf
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Qld 4072, Australia
| |
Collapse
|
5
|
Nambiar S, Kahn N, Gummer JPA. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging by Freeze-Spot Deposition of the Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1829-1836. [PMID: 34047188 DOI: 10.1021/jasms.1c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imaging mass spectrometry has emerged as a powerful metabolite measurement approach to capture the spatial dimension of metabolite distribution in a biological sample. In matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), deposition of the chemical-matrix onto the sample serves to simultaneously extract biomolecules to the sample surface and concurrently render the sample amenable to MALDI. However, matrix application may mobilize sample metabolites and will dictate the efficiency of matrix crystallization, together limiting the lateral resolution which may be optimally achieved by MSI. Here, we describe a matrix application technique, herein referred to as the "freeze-spot" method, conceived as a low-cost preparative approach requiring minimal amounts of chemical matrix while maintaining the spatial dimension of sample metabolites for MALDI-MSI. Matrix deposition was achieved by pipette spot application of the matrix-solubilized within a solvent solution with a freezing point above that of a chilled sample stage to which the sample section is mounted. The matrix solution freezes on contact with the sample and the solvent is removed by sublimation, leaving a fine crystalline matrix on the sample surface. Freeze-spotting is quick to perform, found particularly useful for MALDI-MSI of small sample sections, and well suited to efficient and cost-effective method development pipelines, while capable of maintaining the lateral resolution required by MSI.
Collapse
Affiliation(s)
- Shabarinath Nambiar
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Nusrat Kahn
- School of Environmental Science, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Joel P A Gummer
- School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia
- ChemCentre, Bentley, Western Australia 6102, Australia
| |
Collapse
|
6
|
de Souza LP, Borghi M, Fernie A. Plant Single-Cell Metabolomics-Challenges and Perspectives. Int J Mol Sci 2020; 21:E8987. [PMID: 33256100 PMCID: PMC7730874 DOI: 10.3390/ijms21238987] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Omics approaches for investigating biological systems were introduced in the mid-1990s and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring the whole complement of genes, transcripts, proteins, and metabolites has since become widespread and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further the boundaries of what these techniques can achieve. In this context, single-cell genomics and transcriptomics quickly became a well-established tool to answer fundamental questions challenging to assess at a whole tissue level. Following a similar trend as the original development of these techniques, proteomics alternatives for single-cell exploration have become more accessible and reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future developments and relevant scientific questions that will hopefully be tackled by incorporating these new exciting technologies.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| | - Monica Borghi
- Department of Biology, Utah State University, 1435 Old Main Hill, Logan, UT 84322, USA;
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Müehlenberg 1, Golm, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Secondary‐Ion Mass Spectrometry Images Cardiolipins and Phosphatidylethanolamines at the Subcellular Level. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Tian H, Sparvero LJ, Blenkinsopp P, Amoscato AA, Watkins SC, Bayır H, Kagan VE, Winograd N. Secondary-Ion Mass Spectrometry Images Cardiolipins and Phosphatidylethanolamines at the Subcellular Level. Angew Chem Int Ed Engl 2019; 58:3156-3161. [PMID: 30680861 DOI: 10.1002/anie.201814256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 12/22/2022]
Abstract
Millions of diverse molecules constituting the lipidome act as important signals within cells. Of these, cardiolipin (CL) and phosphatidylethanolamine (PE) participate in apoptosis and ferroptosis, respectively. Their subcellular distribution is largely unknown. Imaging mass spectrometry is capable of deciphering the spatial distribution of multiple lipids at subcellular levels. Here we report the development of a unique 70 keV gas-cluster ion beam that consists of (CO2 )n + (n>10 000) projectiles. Coupled with direct current beam buncher-time-of-flight secondary-ion mass spectrometry, it is optimized for sensitivity towards high-mass species (up to m/z 3000) at high spatial resolution (1 μm). In combination with immunohistochemistry, phospholipids, including PE and CL, have been assessed in subcellular compartments of mouse hippocampal neuronal cells and rat brain tissue.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA
| | - Louis J Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA
| | - Paul Blenkinsopp
- Ionoptika Ltd., Unit B6, Millbrook Cl, Chandler's Ford, Eastleigh, SO53 4BZ, UK
| | - Andrew A Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA
| | | | - Hülya Bayır
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA.,Departments of Environmental and Occupational Health, Radiation Oncology, Critical Care Medicine, Center for Free Radical and Antioxidant Health and Safar Center for Resuscitation Research, University of Pittsburgh, USA.,Children's Neuroscience Institute, UPMC Children's Hospital, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Valerian E Kagan
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA.,Departments of Environmental and Occupational Health, Chemistry, Radiation Oncology, Center for Free Radical and Antioxidant Health, University of Pittsburgh, USA.,Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow Medical State University, Russia
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, 209 Chemistry Bldg., University Park, PA, 16802, USA
| |
Collapse
|
9
|
Abstract
Mass spectrometry imaging (MSI) is a developing technique to measure the spatiotemporal distribution of many biomolecules in tissues. Over the preceding decade MSI has been adopted by plant biologists and applied in a broad range of areas including: primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids, and the developing field of spatial metabolomics. This methods chapter covers preparation of plant tissues for matrix-assisted laser desorption ionization (MALDI)-MSI, including sample embedding and freezing, sectioning, mounting, and matrix deposition using both sublimation and spray deposition prior to MSI analysis.
Collapse
Affiliation(s)
- Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Dinaiz Thinagaran
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Kulkarni P, Dost M, Bulut ÖD, Welle A, Böcker S, Boland W, Svatoš A. Secondary ion mass spectrometry imaging and multivariate data analysis reveal co-aggregation patterns of Populus trichocarpa leaf surface compounds on a micrometer scale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:193-206. [PMID: 29117637 DOI: 10.1111/tpj.13763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 05/23/2023]
Abstract
Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M+● and M-● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C21 -C30 ), hydrocarbons (C25 -C33 ) and wax esters (WEs; C44 -C48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C23 or C29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface.
Collapse
Affiliation(s)
- Purva Kulkarni
- Lehrstuhl für Bioinformatik, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Mina Dost
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Özgül Demir Bulut
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sebastian Böcker
- Lehrstuhl für Bioinformatik, Friedrich Schiller University, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| |
Collapse
|
11
|
Drake RR, West CA, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:59-76. [PMID: 30484244 DOI: 10.1007/978-981-13-2158-0_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|