1
|
Oxytocin - A key to aetiology and treatment for Autism Spectrum Disorder. EBioMedicine 2022; 81:104126. [PMID: 35759921 PMCID: PMC9250000 DOI: 10.1016/j.ebiom.2022.104126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
|
2
|
Medina C, Krawczyk MC, Millan J, Blake MG, Boccia MM. Oxytocin-Cholinergic Central Interaction: Implications for Non-Social Memory Formation. Neuroscience 2022; 497:73-85. [PMID: 35752429 DOI: 10.1016/j.neuroscience.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Oxytocin (OT) and vasopressin (AVP) are two closely related neuropeptides implicated in learning and memory processes, anxiety, nociception, addiction, feeding behavior and social information processing. Regarding learning and memory, OT has induced long-lasting impairment in different behaviors, while the opposite was observed with AVP. We have previously evaluated the effect of peripheral administration of OT or its antagonist (AOT) on the inhibitory avoidance response of mice and on the modulation of cholinergic mechanisms. Here, we replicate and validate those results, but this time through central administration of neuropeptides, considering their poor passage through the blood-brain barrier (BBB). When we delivered OT (0.10 ng/mouse) and its antagonist (0.10 ng/mouse) through intracerebroventricular (ICV) injections, the neuropeptide impaired and AOT enhanced the behavioral performance on an inhibitory avoidance response evaluated 48 h after training in a dose-dependent manner. On top of that, we investigated a possible central interaction between OT and the cholinergic system. Administration of anticholinesterases inhibitors with access to the central nervous system (CNS), the activation of muscarinic acetylcholine (Ach) receptors and the increase of evoked ACh release using linopirdine (Lino) (3-10 µg/kg, IP), reversed the impairment of retention performance induced by OT. Besides, either muscarinic or nicotinic antagonists with unrestricted access to the CNS reduced the magnitude of the performance-facilitating effect of AOT's central infusion. We suggest that OT might induce a cholinergic hypofunction state, resulting in an impairment of IA memory formation, a process for which the cholinergic system is crucially necessary.
Collapse
Affiliation(s)
- C Medina
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - J Millan
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M G Blake
- Instituto de Fisiología y Biofísica (IFIBIO UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - M M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Zhang R, Han J, Han S. Oxytocin and arginine vasopressin: a bridge between acupuncture and autism spectrum disorder. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:119-124. [PMID: 37724244 PMCID: PMC10471124 DOI: 10.1515/mr-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 09/20/2023]
Affiliation(s)
- Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jisheng Han
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Songping Han
- Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| |
Collapse
|
4
|
László K, Kiss O, Vörös D, Mintál K, Ollmann T, Péczely L, Kovács A, Zagoracz O, Kertes E, Kállai V, László B, Hormay E, Berta B, Tóth A, Karádi Z, Lénárd L. Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model. Biomedicines 2022; 10:405. [PMID: 35203614 PMCID: PMC8962302 DOI: 10.3390/biomedicines10020405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder affecting about 1.5% of children, and its prevalence is increasing. Anxiety is one of the most common comorbid signs of ASD. Despite the increasing prevalence, the pathophysiology of ASD is still poorly understood, and its proper treatment has not been defined yet. In order to develop new therapeutic approaches, the valproate- (VPA) induced rodent model of autism can be an appropriate tool. Oxytocin (OT), as a prosocial hormone, may ameliorate some symptoms of ASD. METHODS In the present study, we investigated the possible anxiolytic effect of intraamygdaloid OT on VPA-treated rats using the elevated plus maze test. RESULTS Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time in the open arms of the elevated plus maze apparatus and performed significantly less head dips from the open arms. Bilateral OT microinjection into the central nucleus of the amygdala increased the time spent in the open arms and the number of head dips and reduced the anxiety to the healthy control level. An OT receptor antagonist blocked the anxiolytic effects of OT. The antagonist by itself did not influence the time rats spent in the open arms. CONCLUSIONS Our results show that intraamygdaloid OT has anxiolytic effects in autistic rats.
Collapse
Affiliation(s)
- Kristóf László
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Bettina László
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Edina Hormay
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Attila Tóth
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Current knowledge, challenges, new perspectives of the study, and treatments of Autism Spectrum Disorder. Reprod Toxicol 2021; 106:82-93. [PMID: 34695561 DOI: 10.1016/j.reprotox.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Over the past 70 years, the understanding of Autism Spectrum Disorder (ASD) improved greatly and is characterized as a heterogeneous neuropsychiatric syndrome. ASD is characterized by difficulties in social communication, restricted and repetitive behavior, interests, or activities. And it is often described as a combination of genetic predisposition and environmental factors. There are many treatments and approaches to ASD, including pharmacological therapies with antipsychotics, antidepressants, mood regulators, stimulants, and behavioral ones. However, no treatment is capable of reverting ASD. This review provides an overview of animal models of autism. We summarized genetic and environmental models and then valproic acid treatment as a useful model for ASD. As well as the main therapies and approaches used in the treatment, relating them to the neurochemical pathways altered in ASD, emphasizing the pharmacological potential of peptides and bioinspired compounds found in animal venoms as a possible future treatment for ASD.
Collapse
|
6
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Bou Khalil R, Yazbek JC. Potential importance of supplementation with zinc for autism spectrum disorder. Encephale 2021; 47:514-517. [PMID: 33863509 DOI: 10.1016/j.encep.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Zinc is an essential micronutrient for cellular proliferation and subsequent body and brain development. Zinc deficiency is becoming a major public health issue equally in under-developed and developed countries. The lack of sufficient zinc, whether related to environmental or internal factors, is an important environmental stressor that is eligible to become elucidated as a contributing factor for the pathogenesis of autism spectrum disorder (ASD). The aim of this manuscript is to briefly overview available data regarding the relationship of zinc deficiency with the development of ASD and to relate these data with currently known pathogenetic mechanisms of this disorder namely brain growth disturbances and neuropeptides secretion. Zinc deficiency impacts brain connectivity and growth and alters adequate neurotransmission. In addition, zinc deficiency may indirectly act on the brain by disturbing the immune system and by altering the normal gut-brain connection. Zinc seems to be important for the social effect of neuropeptides. Zinc supplementation in pregnant women and newborn children with the aim of preventing ASD needs further consideration.
Collapse
Affiliation(s)
- R Bou Khalil
- Hôtel Dieu de France- Hôtel-Dieu de France, Saint Joseph University, A. Naccache boulevard, Achrafieh, 166830 Beirut, Lebanon.
| | - J-C Yazbek
- Hôtel Dieu de France- Hôtel-Dieu de France, Saint Joseph University, A. Naccache boulevard, Achrafieh, 166830 Beirut, Lebanon
| |
Collapse
|
8
|
Ornoy A, Weinstein-Fudim L, Ergaz Z. Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? Int J Mol Sci 2019; 20:ijms20051074. [PMID: 30832249 PMCID: PMC6429371 DOI: 10.3390/ijms20051074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Since the first animal model of valproic acid (VPA) induced autistic-like behavior, many genetic and non-genetic experimental animal models for Autism Spectrum Disorder (ASD) have been described. The more common non-genetic animal models induce ASD in rats and mice by infection/inflammation or the prenatal or early postnatal administration of VPA. Through the establishment of these models, attempts have been made to ameliorate or even prevent ASD-like symptoms. Some of the genetic models have been successfully treated by genetic manipulations or the manipulation of neurotransmission. Different antioxidants have been used (i.e., astaxanthin, green tea, piperine) to reduce brain oxidative stress in VPA-induced ASD models. Agents affecting brain neurotransmitters (donepezil, agmatine, agomelatine, memantine, oxytocin) also successfully reduced ASD-like symptoms. However, complete prevention of the development of symptoms was achieved only rarely. In our recent study, we treated mouse offspring exposed on postnatal day four to VPA with S-adenosine methionine (SAM) for three days, and prevented ASD-like behavior, brain oxidative stress, and the changes in gene expression induced by VPA. In this review, we describe, in addition to our data, the existing literature on the prevention/amelioration of ASD-like symptoms. We also discuss the possible mechanisms underlying some of these phenomena. Finally, we describe some of the clinical trials in children with ASD that were carried out as a result of data from animal studies, especially those with polyunsaturated fatty acids (PUFAs).
Collapse
Affiliation(s)
- Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
| | - Zivanit Ergaz
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel.
- Neonatology Department, Hadassah Hebrew University Medical Center, Jerusalem 9112001, Israel.
| |
Collapse
|
9
|
Yuhi T, Ise K, Iwashina K, Terao N, Yoshioka S, Shomura K, Maehara T, Yazaki A, Koichi K, Furuhara K, Cherepanov SM, Gerasimenko M, Shabalova AA, Hosoki K, Kodama H, Zhu H, Tsuji C, Yokoyama S, Higashida H. Sex Differences in Salivary Oxytocin and Cortisol Concentration Changes during Cooking in a Small Group. Behav Sci (Basel) 2018; 8:bs8110101. [PMID: 30400329 PMCID: PMC6262286 DOI: 10.3390/bs8110101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Oxytocin (OT), a neuropeptide, has positive effects on social and emotional processes during group activities. Because cooking is an integrated process in the cognitive, physical, and socio-emotional areas, cooking in a group is reported to improve emotion and cognition. However, evidence for efficacy in group cooking has not been well established at the biological level. Methods: To address this shortcoming, we first measured salivary levels of OT and cortisol (CORT), a biomarker of psychological stress, before and after group cooking for approximately 1 h by people who know each other in healthy married or unmarried men and women. We then compared the initial OT and CORT concentrations with those during individual non-cooking activities in isolation. Results: Baseline OT concentrations before group and non-group sessions did not significantly differ and OT levels increased after both types of activity in men and women. In men, however, the percentage changes of OT levels in the first over the second saliva samples were significantly small during cooking compared with those in individual activities. In women, however, such a difference was not observed. In contrast, the mean salivary CORT concentrations after group cooking were significantly decreased from the baseline level in both sexes, though such decreases were not significant after individual activity sessions. The sex-specific differences were marital-status independent. Conclusion: These results indicate that OT and CORT concentrations after two activity sessions by a familiar group changed in opposite directions in a sex-specific manner. This suggests that, because cooking is experience-based, we need to consider the sex-specific features of group cooking if we apply it for intervention.
Collapse
Affiliation(s)
- Teruko Yuhi
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Kosuke Ise
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Kei Iwashina
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Naoya Terao
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Satoshi Yoshioka
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Keijiro Shomura
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Toshikatsu Maehara
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Akari Yazaki
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Kana Koichi
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Anna A Shabalova
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Kouhei Hosoki
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Hikari Kodama
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Hong Zhu
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-Machi, Kanazawa 920-8640, Japan.
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
10
|
Dai YC, Zhang HF, Schön M, Böckers TM, Han SP, Han JS, Zhang R. Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism. Front Cell Neurosci 2018; 12:355. [PMID: 30356897 PMCID: PMC6190900 DOI: 10.3389/fncel.2018.00355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and repetitive/stereotyped behaviors. The neuropeptide oxytocin (OXT) plays a critical role in regulating social behaviors in the central nervous system, as indicated in both human and animal studies. We hypothesized that central OXT deficit is one of causes of etiology of ASD, which may be responsible for the social impairments. To test our hypothesis, central OXT system was examined in valproic acid (VPA)-induced rat model of autism (VPA rat). Our results showed that adolescent VPA rats exhibited a lower level of OXT mRNA and fewer OXT-ir cells in the hypothalamus than control rats. Additionally, OXT concentration in cerebrospinal fluid (CSF) was reduced. The number of OXT-ir cells in the supraoptic nucleus (SON) of neonatal VPA rats was also lower. Autistic-like behaviors were observed in these animals as well. We found that an acute intranasal administration of exogenous OXT restored the social preference of adolescent VPA rats. Additionally, early postnatal OXT treatment had long-term effects ameliorating the social impairments and repetitive behaviors of VPA rats until adolescence. This was accompanied by an increase in OXT-ir cells. Taken together, we demonstrated there was central OXT deficiency in the VPA-induced rat model of autism, and showed evidence that early postnatal OXT treatment had a long-term therapeutic effect on the autistic-like behaviors in VPA rats.
Collapse
Affiliation(s)
- Yu-Chuan Dai
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hong-Feng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Böckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
de Oliveira Pereira Ribeiro L, Vargas-Pinilla P, Kappel DB, Longo D, Ranzan J, Becker MM, dos Santos Riesgo R, Schuler-Faccini L, Roman T, Schuch JB. Evidence for Association Between OXTR Gene and ASD Clinical Phenotypes. J Mol Neurosci 2018; 65:213-221. [DOI: 10.1007/s12031-018-1088-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
|
12
|
Salivary Oxytocin Concentration Changes during a Group Drumming Intervention for Maltreated School Children. Brain Sci 2017; 7:brainsci7110152. [PMID: 29144396 PMCID: PMC5704159 DOI: 10.3390/brainsci7110152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Many emotionally-disturbed children who have been maltreated and are legally separated from their parents or primary caregivers live in group homes and receive compulsory education. Such institutions provide various special intervention programs. Taiko-ensou, a Japanese style of group drumming, is one such program because playing drums in a group may improve children’s emotional well-being. However, evidence for its efficacy has not been well established at the biological level. In this study, we measured salivary levels of oxytocin (OT), a neuropeptide associated with social memory and communication, in three conditions (recital, practice, and free sessions) in four classes of school-aged children. Following the sessions, OT concentrations showed changes in various degrees and directions (no change, increases, or decreases). The mean OT concentration changes after each session increased, ranging from 112% to 165%. Plasma OT concentrations were equally sensitive to drum playing in school-aged boys and girls. However, the difference between practice and free play sessions was only significant among elementary school boys aged 8–12 years. The results suggest that younger boys are most responsive to this type of educational music intervention.
Collapse
|