1
|
Kapetanaki SM, Coquelle N, von Stetten D, Byrdin M, Rios-Santacruz R, Bean R, Bielecki J, Boudjelida M, Fekete Z, Grime GW, Han H, Hatton C, Kantamneni S, Kharitonov K, Kim C, Kloos M, Koua FHM, de Diego Martinez I, Melo D, Rane L, Round A, Round E, Sarma A, Schubert R, Schulz J, Sikorski M, Vakili M, Valerio J, Vitas J, de Wijn R, Wrona A, Zala N, Pearson A, Dörner K, Schirò G, Garman EF, Lukács A, Weik M. Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCRJ 2024; 11:991-1006. [PMID: 39470573 PMCID: PMC11533990 DOI: 10.1107/s2052252524010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond-millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond-millisecond spectroscopic intermediates.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL)Hamburg Unit c/o DESYNotkestrasse 8522607HamburgGermany
| | - Martin Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Ronald Rios-Santacruz
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Mohamed Boudjelida
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Zsuzsana Fekete
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Geoffrey W. Grime
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Huijong Han
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Caitlin Hatton
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | | | - Chan Kim
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Marco Kloos
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - Diogo Melo
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Lukas Rane
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Adam Round
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | | | | | | | | | | | - Jovana Vitas
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Ninon Zala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Arwen Pearson
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Elspeth F. Garman
- Department of BiochemistryUniversity of OxfordDorothy Crowfoot Hodgkin Building, South Parks RoadOxfordOX1 3QUUnited Kingdom
| | - András Lukács
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
2
|
Yuan S, Fu W, Du M, Yao R, Zhang D, Li C, Chen Z, Wang J. Enhanced cold tolerance mechanisms in Euglena gracilis: comparative analysis of pre-adaptation and direct low-temperature exposure. Front Microbiol 2024; 15:1465351. [PMID: 39483759 PMCID: PMC11524907 DOI: 10.3389/fmicb.2024.1465351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Microalgae, known for their adaptability to extreme environments, are important for basic research and industrial applications. Euglena, unique for its lack of a cell wall, has garnered attention due to its versatility and the presence of bioactive compounds. Despite its potential, few studies have focused on Euglena's cold adaptation mechanisms. Methods This study investigates the cold adaptation mechanisms of Euglena gracilis, a microalga found in highly diverse environmental habitats, by comparing its growth, photosynthetic performance, and physiological and biochemical responses under two low-temperature cultivation modes: pre-adaptation to 16°C followed by exposure to 4°C (PreC) and direct exposure to 4°C (DirC). Results and discussion In this study, the PreC group exhibited superior growth rates, higher photosynthetic efficiency, and more excellent antioxidant activity compared to the DirC group. These advantages were attributed to higher levels of protective compounds, enhanced membrane stability, and increased unsaturated fatty acid content. The PreC group's ability to maintain higher cell vitality under cold stress conditions underscores the significance of pre-adaptation in enhancing cold tolerance. The findings from this research provide valuable insights into the mechanisms underlying cold adaptation in E. gracilis, emphasizing the benefits of pre-adaptation. These insights are crucial for optimizing the cultivation of algal species under cold stress conditions, which is essential for both biotechnological applications and ecological studies. This study not only advances our understanding of Euglena's adaptive responses to low temperatures but also contributes to the broader field of algal research and its industrial exploitation.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Hainan Chenhai Aquatic Co., Ltd., Sanya, China
| | - Wen Fu
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rao Yao
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Dan Zhang
- Mechanical Engineering College, Xi’an Shiyou University, Xi’an, China
| | - Chao Li
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Bedard S, Roxborough E, O'Neill E, Mangal V. The biomolecules of Euglena gracilis: Harnessing biology for natural solutions to future problems. Protist 2024; 175:126044. [PMID: 38823247 DOI: 10.1016/j.protis.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Over the past decade, the autotrophic and heterotrophic protist Euglena gracilis (E. gracilis) has gained popularity across the studies of environmental science, biosynthesis experiments, and nutritional substitutes. The unique physiology and versatile metabolism of E. gracilis have been a recent topic of interest to many researchers who continue to understand the complexity and possibilities of using E. gracilis biomolecule production. In this review, we present a comprehensive representation of recent literature outlining the various uses of biomolecules derived from E. gracilis across the fields of natural product biosynthesis, as a nutritional substitute, and as bioremediation tools. In addition, we highlight effective strategies for altering metabolite production using abiotic stressors and growth conditions. To better understand metabolite biosynthesis and its role in E. gracilis, integrated studies involving genomics, metabolomics, and proteomics should be considered. Together, we show how the ongoing advancements in E. gracilis related research continue to broaden applications in the biosynthetic sector and highlight future works that would strengthen our understanding of overall Euglena metabolism.
Collapse
Affiliation(s)
- S Bedard
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada
| | - E Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - V Mangal
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada.
| |
Collapse
|
4
|
Tamaki S, Shinomura T, Mochida K. Illuminating the diversity of carotenoids in microalgal eyespots and phototaxis. PLANT SIGNALING & BEHAVIOR 2023; 18:2257348. [PMID: 37724547 PMCID: PMC10512927 DOI: 10.1080/15592324.2023.2257348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the various endosymbiotic events in their evolutionary history. Carotenoids such as astaxanthin, diadinoxanthin, and fucoxanthin are unique to algae. In microalgae, carotenoids are concentrated in the eyespot, a pigmented organelle that is important for phototaxis. A wide range of microalgae, including chlorophytes, euglenophytes, ochrophytes, and haptophytes, have an eyespot. In the chlorophyte Chlamydomonas reinhardtii, carotenoid layers in the eyespot reflect light to amplify the photosignal and shield photoreceptors from light, thereby enabling precise phototaxis. Our recent research revealed that, in contrast to the β-carotene-rich eyespot of C. reinhardtii, the euglenophyte Euglena gracilis relies on zeaxanthin for stable eyespot formation and phototaxis. In this review, we highlight recent advancements in the study of eyespot carotenoids and phototaxis in these microalgae, placing special emphasis on the diversity of carotenoid-dependent visual systems among microalgae.
Collapse
Affiliation(s)
- Shun Tamaki
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Shinomura
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Microalgae Resource Upcycling Research Laboratory, RIKEN Baton Zone Program, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Zoltner M, Field MC. Microbe Profile: Euglena gracilis: photogenic, flexible and hardy. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178464 DOI: 10.1099/mic.0.001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Euglena gracilis is a unicellular photosynthetic eukaryotic flagellate of the Discoba supergroup, which also encompasses Kinetoplastida and Diplonema. Plastids have green algal origin and are secondarily acquired. The nuclear genome is extremely large and many genes suggest multiple endosymbiotic/gene transfer events, i.e. derivation from prokaryotes of various lineages. E. gracilis is remarkably robust and can proliferate in environments contaminated with heavy metals and acids. Extraordinary metabolic plasticity and a mixotrophic lifestyle confers an ability to thrive in a broad range of environments, as well as facilitating production of many novel metabolites, making Euglena of considerable biotechnological importance.
Collapse
Affiliation(s)
- Martin Zoltner
- Faculty of Science, Department of Parasitology, Charles University, BIOCEV, Vestec, Czechia
| | - Mark C Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czechia.,School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
6
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
7
|
Photoreaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112252. [PMID: 34265548 DOI: 10.1016/j.jphotobiol.2021.112252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes PCC 7420 (mPAC), which consists of a Per-Arnt-Sim (PAS), a light‑oxygene-voltage (LOV), and an adenylate cyclase (AC) domain, was investigated mainly using the time-resolved transient grating method. An absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 0.66 μs. After this reaction, a significant diffusion coefficient (D)-change was observed with a time constant of 38 ms. The determined D-value was concentration-dependent indicating a rapid equilibrium between the dimer and tetramer. Combining the results of size exclusion chromatography and CD spectroscopy, we concluded that the photoinduced D-change was mainly attributed to the equilibrium shift from the dimer rich to the tetramer rich states upon light exposure. Since the reaction rate does not depend on concentration, the rate determining step of the tetramer formation is not the collision of proteins by diffusion, but a conformation change. The roles of the PAS and AC domains as well as the N- and C-terminal flanking helices of the LOV domain (A'α- and Jα-helices) were investigated using various truncated mutants. The PAS domain was found to be a strong dimerization site and is related to efficient signal transduction. It was found that simultaneous existence of the A'α- and Jα-helices in mPAC is important for the light-induced conformation change to lead the conformation change which induces the tetramer formation. The results suggest that the angle changes of the coiled-coil structures in the A'α and Jα-helices are essential for this conformation change. The reaction scheme of mPAC is proposed.
Collapse
|
8
|
Photoactivated Adenylyl Cyclases: Fundamental Properties and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398810 DOI: 10.1007/978-981-15-8763-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Photoactivated adenylyl cyclase (PAC) was first discovered to be a sensor for photoavoidance in the flagellate Euglena gracilis. PAC is a flavoprotein that catalyzes the production of cAMP upon illumination with blue light, which enables us to optogenetically manipulate intracellular cAMP levels in various biological systems. Recent progress in genome sequencing has revealed several related proteins in bacteria and ameboflagellates. Among them, the PACs from sulfur bacterium Beggiatoa sp. and cyanobacterium Oscillatoria acuminata have been well characterized, including their crystalline structure. Although there have not been many reported optogenetic applications of PACs so far, they have the potential to be used in various fields within bioscience.
Collapse
|
9
|
Kato S, Ozasa K, Maeda M, Tanno Y, Tamaki S, Higuchi‐Takeuchi M, Numata K, Kodama Y, Sato M, Toyooka K, Shinomura T. Carotenoids in the eyespot apparatus are required for triggering phototaxis in Euglena gracilis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1091-1102. [PMID: 31630463 PMCID: PMC7155050 DOI: 10.1111/tpj.14576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/08/2019] [Indexed: 06/02/2023]
Abstract
Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a cluster of carotenoid-rich globules that acts as a reflector device, and actual photoreceptors for photobehaviors. Unlike other algal eyespots, the eyespot of Euglenophyta lacks reflective properties and is generally considered to act as a shading device for the photoreceptor (paraflagellar body, PFB) for major photomovements. However, the function of the eyespot of Euglenophyta has not yet been fully proven. Here, we report that the blocking carotenoid biosynthesis in Euglena gracilis by suppressing the phytoene synthase gene (crtB) caused a defect in eyespot function resulting in a loss of phototaxis. Raman spectroscopy and transmission electron microscopy suggested that EgcrtB-suppressed cells formed eyespot globules but had a defect in the accumulation of carotenoids in those packets. Motion analysis revealed the loss of phototaxis in EgcrtB-suppressed cells: a defect in the initiation of turning movements immediately after a change in light direction, rather than a defect in the termination of cell turning at the appropriate position due to a loss of the shading effect on the PFB. This study revealed that carotenoids are essential for light perception by the EA for the initiation of phototactic movement by E. gracilis, suggesting one possible photosensory role of carotenoids in the EA for the phototaxis.
Collapse
Affiliation(s)
- Shota Kato
- Plant Molecular and Cellular Biology LaboratoryDepartment of BiosciencesSchool of Science and EngineeringTeikyo University1‐1 ToyosatodaiUtsunomiyaTochigi320‐8551Japan
- Laboratory of Complex BiologyCenter for Plant Aging ResearchInstitute for Basic ScienceDGISTDaegu42988Republic of Korea
| | - Kazunari Ozasa
- Bioengineering LaboratoryCluster for Pioneering ResearchRIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Mizuo Maeda
- Bioengineering LaboratoryCluster for Pioneering ResearchRIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Yuri Tanno
- Plant Molecular and Cellular Biology LaboratoryDivision of Integrated Science and EngineeringGraduate School of Science and EngineeringTeikyo University Graduate Schools1‐1 ToyosatodaiUtsunomiyaTochigi320‐8551Japan
| | - Shun Tamaki
- Plant Molecular and Cellular Biology LaboratoryDepartment of BiosciencesSchool of Science and EngineeringTeikyo University1‐1 ToyosatodaiUtsunomiyaTochigi320‐8551Japan
| | - Mieko Higuchi‐Takeuchi
- Biomacromolecules Research TeamCenter for Sustainable Resource ScienceRIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Keiji Numata
- Biomacromolecules Research TeamCenter for Sustainable Resource ScienceRIKEN2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Yutaka Kodama
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiyaTochigi321‐8505Japan
| | - Mayuko Sato
- Center for Sustainable Resource ScienceRIKEN1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource ScienceRIKEN1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| | - Tomoko Shinomura
- Plant Molecular and Cellular Biology LaboratoryDepartment of BiosciencesSchool of Science and EngineeringTeikyo University1‐1 ToyosatodaiUtsunomiyaTochigi320‐8551Japan
- Plant Molecular and Cellular Biology LaboratoryDivision of Integrated Science and EngineeringGraduate School of Science and EngineeringTeikyo University Graduate Schools1‐1 ToyosatodaiUtsunomiyaTochigi320‐8551Japan
| |
Collapse
|
10
|
Häder D. On the Way to Mars-Flagellated Algae in Bioregenerative Life Support Systems Under Microgravity Conditions. FRONTIERS IN PLANT SCIENCE 2020; 10:1621. [PMID: 31969888 PMCID: PMC6960400 DOI: 10.3389/fpls.2019.01621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
For long-term manned interplanetary missions it is not feasible to carry the necessary oxygen, food, and water to sustain the astronauts. In addition, the CO2 exhaled by the astronauts has to be removed from the cabin air. One alternative is to utilize photosynthetic organisms to uptake the CO2 and produce oxygen. In addition to higher plants, algae are perfect candidates for this purpose. They also serve to absorb wastes and clean the water. Cyanobacteria can be utilized as food supplement. Early ground-based systems include micro-ecological life support system alternative, closed equilibrated biological aquatic system, and the Biomass Production Chamber. The AQUARACK used the unicellular flagellate Euglena which produced the oxygen for fish in a connected compartment. A number of bioregenerative systems (AQUACELLS, OMEGAHAB) have been built for experiments on satellites. A later experiment was based on a 60-ml closed aquatic ecosystem launched on the Shenzhou 8 spacecraft containing several algae and a small snail living in adjacent chambers. Recently the Eu : CROPIS mission has been launched in a small satellite within a Deutschen Zentrum für Luft- und Raumfahrt (DLR) program. In addition to tomato plants, Euglena is included as oxygen producer. One new approach is to recycle urine on a bacterial filter to produce nitrogen fertilizer to grow vegetables.
Collapse
Affiliation(s)
- Donat‑P. Häder
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Zhang L, Wang WX. Dominant Role of Silver Ions in Silver Nanoparticle Toxicity to a Unicellular Alga: Evidence from Luminogen Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:494-502. [PMID: 30525502 DOI: 10.1021/acs.est.8b04918] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the extensive studies on silver nanoparticle (AgNP) toxicity, the contribution of released silver ions to the toxicity still remains debatable. This study investigated the toxicity of AgNPs with different sizes (20 and 60 nm) toward a phytoplankton Euglena gracilis, with a focus on evaluating the contributions of dissolved Ag to the toxicity by combining a newly developed aggregation-induced emission luminogen (AIEgen)-based imaging technique and a traditional inductively coupled plasma mass spectrometry (ICP-MS) method. Smaller AgNPs, which dissolved much faster, exhibited greater toxicity, as evidenced by lower 50% growth inhibition concentration (EC50). However, the average Ag+ concentration at each EC50 was comparable to the EC50 of AgNO3, and similar subcellular Ag distribution patterns were observed in both AgNPs and AgNO3 exposed algae. More silver ions were internalized in algae treated with smaller AgNPs. With the application of luminogen imaging technology, we for the first time demonstrated that few Ag(I) were presented intracellularly in algae exposed to AgNPs when any released Ag in the medium was complexed by cysteine. Ag(I) was mainly distributed in cellular debris, organelles, and metal-rich granules fractions. No conclusive evidence for AgNP internalization was documented. Our results strongly suggested that Ag+ released from AgNPs extracellularly dominated the AgNP toxicity. The findings of this work provide new and useful insight into the toxicity of AgNPs in aquatic environments.
Collapse
Affiliation(s)
- Luqing Zhang
- Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Ocean Science , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen 518057 , China
- Department of Ocean Science , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
12
|
Bhattarai MK, Bhattarai UR, Feng JN, Wang D. Effect of Different Light Spectrum in Helicoverpa armigera Larvae during HearNPV Induced Tree-Top Disease. INSECTS 2018; 9:insects9040183. [PMID: 30518028 PMCID: PMC6316081 DOI: 10.3390/insects9040183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/04/2023]
Abstract
Lepidopteran larvae upon infection by baculovirus show positive photo-tactic movement during tree-top disease. In light of many insects exploiting specific spectral information for the different behavioral decision, each spectral wavelength of light is an individual parsimonious candidate for such behavior stimulation. Here, we investigated the responses of third instar Helicoverpa armigera larvae infected by Helicoverpa armigera nucleopolyhedrovirus (HearNPV) to white (broad-spectrum), blue (450–490 nm), UVA (320–400 nm), and UVB (290–320 nm) lights for the tree-top disease. Our findings suggest that tree-top phenomenon is induced only when the light is applied from above. Blue, white and UVA lights from above induced tree-top disease, causing infected larvae to die in an elevated position compared to those larvae living in the complete dark. In contrast, UVB from above did not induce tree-top disease. Blue light exerted the maximum photo-tactic response, significantly (p < 0.01) higher than white light. The magnitude of the response decreased with decreasing wavelength to UVA, and no response at UVB. Our results suggested that the spectral wavelength of the light has a significant effect on the induction of the tree-top disease in H. armigera third instar larvae infected with HearNPV.
Collapse
Affiliation(s)
- Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Ji-Nian Feng
- Department of Entomology, Northwest A&F University, Yangling 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Bhattarai UR, Li F, Katuwal Bhattarai M, Masoudi A, Wang D. Phototransduction and circadian entrainment are the key pathways in the signaling mechanism for the baculovirus induced tree-top disease in the lepidopteran larvae. Sci Rep 2018; 8:17528. [PMID: 30510155 PMCID: PMC6277413 DOI: 10.1038/s41598-018-35885-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
The tree-top disease is an altered behavioral state, displayed by baculovirus-infected lepidopteran larvae, and characterized by climbing to an elevated position before death. The detailed molecular mechanism underlying this phenomenal behavior change has not been reported yet. Our study focused on the transcriptomic changes in the host larvae due to baculovirus infection from pre-symptomatic to tree-top disease stage. Enrichment map visualization of the gene sets grouped based on the functional annotation similarity revealed 34 enriched pathways in signaling mechanism cluster during LdMNPV induced tree-top disease in third instar Lymantria dispar asiatica larvae. Directed light bioassay demonstrated the positively phototactic larvae during tree-top disease and the gene expression analysis showed altered rhythmicity of the host’s core circadian genes (per and tim) during the course of infection emphasizing the role of Circadian entrainment and Phototransduction pathways in the process, which also showed maximum interactions (>50% shared genes with 24 and 23 pathways respectively) among other signaling pathways in the enrichment map. Our study provided valuable insights into different pathways and genes, their coordinated response and molecular regulation during baculovirus infection and also improved our understanding regarding signaling mechanisms in LdMNPV induced tree-top disease.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Abolfazl Masoudi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
14
|
Ozasa K, Won J, Song S, Maeda M. Behavior of Euglena gracilis under simultaneous competing optical and chemical stimuli. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
|