1
|
Ellena V, Steiger MG. The importance of complete and high-quality genome sequences in Aspergillus niger research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:935993. [PMID: 37746178 PMCID: PMC10512394 DOI: 10.3389/ffunb.2022.935993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 09/26/2023]
Abstract
The possibility to sequence the entire genome of an organism revolutionized the fields of biology and biotechnology. The first genome sequence of the important filamentous fungus Aspergillus niger was obtained in 2007, 11 years after the release of the first eukaryotic genome sequence. From that moment, genomics of A. niger has seen major progresses, facilitated by the advances in the sequencing technologies and in the methodologies for gene function prediction. However, there are still challenges to face when trying to obtain complete genomes, equipped with all the repetitive sequences that they contain and without omitting the mitochondrial sequences. The aim of this perspective article is to discuss the current status of A. niger genomics and draw attention to the open challenges that the fungal community should address to move research of this important fungus forward.
Collapse
Affiliation(s)
- Valeria Ellena
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU Wien), Vienna, Austria
| | - Matthias G. Steiger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU Wien), Vienna, Austria
| |
Collapse
|
2
|
Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1-2 locus of Aspergillus niger. BMC Genomics 2021; 22:679. [PMID: 34548025 PMCID: PMC8454179 DOI: 10.1186/s12864-021-07990-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Background Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65. Results The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1–1 locus of ATCC 1015 compared to the MAT1–2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1–1 locus and the other half a MAT1–2 locus. The genomic organization of the MAT1–2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1–1 locus is flipped in all sequenced strains of A. niger. Conclusions This study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1–1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07990-8.
Collapse
|
3
|
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genet 2021; 17:e1009743. [PMID: 34464380 PMCID: PMC8407549 DOI: 10.1371/journal.pgen.1009743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres. Linear eukaryotic chromosomes require a specific chromosomal region, the centromere, where the macromolecular kinetochore protein complex assembles. In most organisms, centromeres are located in gene-free, repeat-rich chromosomal regions and may or may not be associated with heterochromatic epigenetic marks. We report that the native centromeres of the human fungal pathogen Cryptococcus deuterogattii are enriched with heterochromatin marks. Deleting a centromere in C. deuterogattii results in formation of neocentromeres that span genes. In some cases, neocentromeres are unstable leading to chromosome-chromosome fusions and neocentromere inactivation. These neocentromeres, unlike native centromeres, lack any of the tested heterochromatic marks or any epigenetic memory. We also found that neocentromere formation can be triggered not only by deletion of the native centromere but also by disrupting its function via insertion of a gene. These results show that neocentromere dynamics in this fungal pathogen are unique among organisms studied so far. Our results also revealed key differences between epigenetics of native centromeres between C. deuterogattii and its sister species, C. neoformans. These finding provide an opportunity to test and study the evolution of centromeres, as well as neocentromeres, in this species complex and how it might contribute to their genome evolution.
Collapse
Affiliation(s)
- Klaas Schotanus
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
4
|
Cook DE, Kramer HM, Torres DE, Seidl MF, Thomma BPHJ. A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. eLife 2020; 9:e62208. [PMID: 33337321 PMCID: PMC7781603 DOI: 10.7554/elife.62208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Genomes store information at scales beyond the linear nucleotide sequence, which impacts genome function at the level of an individual, while influences on populations and long-term genome function remains unclear. Here, we addressed how physical and chemical DNA characteristics influence genome evolution in the plant pathogenic fungus Verticillium dahliae. We identified incomplete DNA methylation of repetitive elements, associated with specific genomic compartments originally defined as Lineage-Specific (LS) regions that contain genes involved in host adaptation. Further chromatin characterization revealed associations with features such as H3 Lys-27 methylated histones (H3K27me3) and accessible DNA. Machine learning trained on chromatin data identified twice as much LS DNA as previously recognized, which was validated through orthogonal analysis, and we propose to refer to this DNA as adaptive genomic regions. Our results provide evidence that specific chromatin profiles define adaptive genomic regions, and highlight how different epigenetic factors contribute to the organization of these regions.
Collapse
Affiliation(s)
- David E Cook
- Department of Plant Pathology, Kansas State UniversityManhattanUnited States
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - David E Torres
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
5
|
Ola M, O'Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, Butler G. Polymorphic centromere locations in the pathogenic yeast Candida parapsilosis. Genome Res 2020; 30:684-696. [PMID: 32424070 PMCID: PMC7263194 DOI: 10.1101/gr.257816.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/24/2020] [Indexed: 11/24/2022]
Abstract
Centromeres pose an evolutionary paradox: strongly conserved in function but rapidly changing in sequence and structure. However, in the absence of damage, centromere locations are usually conserved within a species. We report here that isolates of the pathogenic yeast species Candida parapsilosis show within-species polymorphism for the location of centromeres on two of its eight chromosomes. Its old centromeres have an inverted-repeat (IR) structure, whereas its new centromeres have no obvious structural features but are located within 30 kb of the old site. Centromeres can therefore move naturally from one chromosomal site to another, apparently spontaneously and in the absence of any significant changes in DNA sequence. Our observations are consistent with a model in which all centromeres are genetically determined, such as by the presence of short or long IRs or by the ability to form cruciforms. We also find that centromeres have been hotspots for genomic rearrangements in the C. parapsilosis clade.
Collapse
Affiliation(s)
- Mihaela Ola
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Caoimhe E O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Y Coughlan
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Qinxi Ma
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul D Donovan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth H Wolfe
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev IV, Heitman J, Sanyal K, Garre V. Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Curr Biol 2019; 29:3791-3802.e6. [PMID: 31679929 PMCID: PMC6925572 DOI: 10.1016/j.cub.2019.09.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.
Collapse
Affiliation(s)
| | - Carlos Pérez-Arques
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Shweta Panchal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Francisco E Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO 80521, USA
| | - Promit Ganguly
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94598, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
7
|
Sreekumar L, Jaitly P, Chen Y, Thimmappa BC, Sanyal A, Sanyal K. Cis- and Trans-chromosomal Interactions Define Pericentric Boundaries in the Absence of Conventional Heterochromatin. Genetics 2019; 212:1121-1132. [PMID: 31142612 PMCID: PMC6707466 DOI: 10.1534/genetics.119.302179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023] Open
Abstract
The diploid budding yeast Candida albicans harbors unique CENPA-rich 3- to 5-kb regions that form the centromere (CEN) core on each of its eight chromosomes. The epigenetic nature of these CENs does not permit the stabilization of a functional kinetochore on an exogenously introduced CEN plasmid. The flexible nature of such centromeric chromatin is exemplified by the reversible silencing of a transgene upon its integration into the CENPA-bound region. The lack of a conventional heterochromatin machinery and the absence of defined boundaries of CENPA chromatin makes the process of CEN specification in this organism elusive. Additionally, upon native CEN deletion, C. albicans can efficiently activate neocentromeres proximal to the native CEN locus, hinting at the importance of CEN-proximal regions. In this study, we examine this CEN-proximity effect and identify factors for CEN specification in C. albicans We exploit a counterselection assay to isolate cells that can silence a transgene when integrated into the CEN-flanking regions. We show that the frequency of reversible silencing of the transgene decreases from the central core of CEN7 to its peripheral regions. Using publicly available C. albicans high-throughput chromosome conformation capture data, we identify a 25-kb region centering on the CENPA-bound core that acts as CEN-flanking compact chromatin (CFCC). Cis- and trans-chromosomal interactions associated with the CFCC spatially segregates it from bulk chromatin. We further show that neocentromere activation on chromosome 7 occurs within this specified region. Hence, this study identifies a specialized CEN-proximal domain that specifies and restricts the centromeric activity to a unique region.
Collapse
Affiliation(s)
- Lakshmi Sreekumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Priya Jaitly
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
| | - Bhagya C Thimmappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
| | - Kaustuv Sanyal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
8
|
Coughlan AY, Wolfe KH. The reported point centromeres of
Scheffersomyces stipitis
are retrotransposon long terminal repeats. Yeast 2019; 36:275-283. [DOI: 10.1002/yea.3375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Aisling Y. Coughlan
- UCD Conway Institute, School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of MedicineUniversity College Dublin Dublin 4 Ireland
| |
Collapse
|