1
|
Tang S, Yang N, Yu M, Wang S, Hu X, Ni H, Cai W. Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F&S SCIENCE 2022; 3:310-321. [PMID: 35843541 DOI: 10.1016/j.xfss.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish an optimized autologous mitochondria transport technique for oocyte-aging rescue, which minimizes both the patient's pains and the damage to oocytes. DESIGN Experimental laboratory study. SETTING Laboratory. ANIMAL(S) Institute of Cancer Research mice. INTERVENTION(S) The murine umbilical cord mesenchymal stem cells were isolated from the female pup and cryopreserved. After the female aged, its germinal vesicle (GV) oocytes were collected and treated to weaken the zona pellucida. Its autologous umbilical cord mesenchymal stem cells were induced into granulosa cells (iGCs). The zona-weakened GV oocytes were aggregated with iGCs into iGC-oocyte complexes. Then, these complexes were cultured in growth-differentiation factor 9-containing media for 3 days. Next, they were subjected to in vitro maturation and fertilization. Presumptive zygotes were cultured for 24 hours, and the cleaved 2-cell embryos were selected for embryo transfer. MAIN OUTCOME MEASURE(S) The oocyte quality was determined by examining mitochondrial ultrastructure using transmission electron microscopy, the adenosine triphosphate content using a luminometer, and intracellular reactive oxygen species levels by confocal microscopy. The spindle organization in mature oocytes was examined by confocal microscopy. The developmental potential of oocytes was evaluated by monitoring the in vitro embryo development and the birth rate after embryo transfer. RESULT(S) Mitochondria migrated from iGCs into the GV oocyte via transzonal filopodia. The maturation rate, quality, and developmental potential of these oocytes were substantially increased. Furthermore, the birth rate after embryo transfer has been improved. CONCLUSION(S) This approach used noninvasive procedures to collect mitochondria donor cells and optimized mitochondria transfer manipulations; thus, it may have potential in ameliorating oocyte-aging-related subfertility.
Collapse
Affiliation(s)
- Shuang Tang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China.
| | - Nannan Yang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mingxi Yu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shuo Wang
- Instrumental Analysis and Test Center, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Xiangdong Hu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Heliang Ni
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Wenyang Cai
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
2
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Kloc M, Uosef A, Villagran M, Zdanowski R, Kubiak JZ, Wosik J, Ghobrial RM. RhoA- and Actin-Dependent Functions of Macrophages from the Rodent Cardiac Transplantation Model Perspective -Timing Is the Essence. BIOLOGY 2021; 10:biology10020070. [PMID: 33498417 PMCID: PMC7909416 DOI: 10.3390/biology10020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The functions of animal and human cells depend on the actin cytoskeleton and its regulating protein called the RhoA. The actin cytoskeleton and RhoA also regulate the response of the immune cells such as macrophages to the microbial invasion and/or the presence of a non-self, such as a transplanted organ. The immune response against transplant occurs in several steps. The early step occurring within days post-transplantation is called the acute rejection and the late step, occurring months to years post-transplantation, is called the chronic rejection. In clinical transplantation, acute rejection is easily manageable by the anti-rejection drugs. However, there is no cure for chronic rejection, which is caused by the macrophages entering the transplant and promoting blockage of its blood vessels and destruction of tissue. We discuss here how the inhibition of the RhoA and actin cytoskeleton polymerization in the macrophages, either by genetic interference or pharmacologically, prevents macrophage entry into the transplanted organ and prevents chronic rejection, and also how it affects the anti-microbial function of the macrophages. We also focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection and anti-microbial therapies. Abstract The small GTPase RhoA, and its down-stream effector ROCK kinase, and the interacting Rac1 and mTORC2 pathways, are the principal regulators of the actin cytoskeleton and actin-related functions in all eukaryotic cells, including the immune cells. As such, they also regulate the phenotypes and functions of macrophages in the immune response and beyond. Here, we review the results of our and other’s studies on the role of the actin and RhoA pathway in shaping the macrophage functions in general and macrophage immune response during the development of chronic (long term) rejection of allografts in the rodent cardiac transplantation model. We focus on the importance of timing of the macrophage functions in chronic rejection and how the circadian rhythm may affect the anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- M.D. Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| | - Martha Villagran
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine (WIM), 04-141 Warsaw, Poland;
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland;
- Cell Cycle Group, CNRS, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, UMR, 6290 Rennes, France
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX 77204, USA; (M.V.); (J.W.)
- Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Houston, TX 77030, USA; (A.U.); (R.M.G.)
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|