1
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|