Zhu J, Wang C, Zhang Y, Zhan M, Zhao W, Teng S, Lu L, Teng GJ. 3D/2D Vessel Registration Based on Monte Carlo Tree Search and Manifold Regularization.
IEEE TRANSACTIONS ON MEDICAL IMAGING 2024;
43:1727-1739. [PMID:
38153820 DOI:
10.1109/tmi.2023.3347896]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The augmented intra-operative real-time imaging in vascular interventional surgery, which is generally performed by projecting preoperative computed tomography angiography images onto intraoperative digital subtraction angiography (DSA) images, can compensate for the deficiencies of DSA-based navigation, such as lack of depth information and excessive use of toxic contrast agents. 3D/2D vessel registration is the critical step in image augmentation. A 3D/2D registration method based on vessel graph matching is proposed in this study. For rigid registration, the matching of vessel graphs can be decomposed into continuous states, thus 3D/2D vascular registration is formulated as a search tree problem. The Monte Carlo tree search method is applied to find the optimal vessel matching associated with the highest rigid registration score. For nonrigid registration, we propose a novel vessel deformation model based on manifold regularization. This model incorporates the smoothness constraint of vessel topology into the objective function. Furthermore, we derive simplified gradient formulas that enable fast registration. The proposed technique undergoes evaluation against seven rigid and three nonrigid methods using a variety of data - simulated, algorithmically generated, and manually annotated - across three vascular anatomies: the hepatic artery, coronary artery, and aorta. Our findings show the proposed method's resistance to pose variations, noise, and deformations, outperforming existing methods in terms of registration accuracy and computational efficiency. The proposed method demonstrates average registration errors of 2.14 mm and 0.34 mm for rigid and nonrigid registration, and an average computation time of 0.51 s.
Collapse