1
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
2
|
Ma Y, Hu L, Tang J, Guo W, Feng Y, Liu Y, Tang F. Three-Dimensional Cell Co-Culture Liver Models and Their Applications in Pharmaceutical Research. Int J Mol Sci 2023; 24:ijms24076248. [PMID: 37047220 PMCID: PMC10094553 DOI: 10.3390/ijms24076248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
As the primary site for the biotransformation of drugs, the liver is the most focused on organ type in pharmaceutical research. However, despite being widely used in pharmaceutical research, animal models have inherent species differences, while two-dimensional (2D) liver cell monocultures or co-cultures and three-dimensional (3D) liver cell monoculture in vitro liver models do not sufficiently represent the complexity of the human liver’s structure and function, making the evaluation results from these tools less reliable. Therefore, there is a pressing need to develop more representative in vitro liver models for pharmaceutical research. Fortunately, an exciting new development in recent years has been the emergence of 3D liver cell co-culture models. These models hold great promise as in vitro pharmaceutical research tools, because they can reproduce liver structure and function more practically. This review begins by explaining the structure and main cell composition of the liver, before introducing the potential advantages of 3D cell co-culture liver models for pharmaceutical research. We also discuss the main sources of hepatocytes and the 3D cell co-culture methods used in constructing these models. In addition, we explore the applications of 3D cell co-culture liver models with different functional states and suggest prospects for their further development.
Collapse
|
3
|
Fabrication and Characterization Techniques of In Vitro 3D Tissue Models. Int J Mol Sci 2023; 24:ijms24031912. [PMID: 36768239 PMCID: PMC9915354 DOI: 10.3390/ijms24031912] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
The culturing of cells in the laboratory under controlled conditions has always been crucial for the advancement of scientific research. Cell-based assays have played an important role in providing simple, fast, accurate, and cost-effective methods in drug discovery, disease modeling, and tissue engineering while mitigating reliance on cost-intensive and ethically challenging animal studies. The techniques involved in culturing cells are critical as results are based on cellular response to drugs, cellular cues, external stimuli, and human physiology. In order to establish in vitro cultures, cells are either isolated from normal or diseased tissue and allowed to grow in two or three dimensions. Two-dimensional (2D) cell culture methods involve the proliferation of cells on flat rigid surfaces resulting in a monolayer culture, while in three-dimensional (3D) cell cultures, the additional dimension provides a more accurate representation of the tissue milieu. In this review, we discuss the various methods involved in the development of 3D cell culture systems emphasizing the differences between 2D and 3D systems and methods involved in the recapitulation of the organ-specific 3D microenvironment. In addition, we discuss the latest developments in 3D tissue model fabrication techniques, microfluidics-based organ-on-a-chip, and imaging as a characterization technique for 3D tissue models.
Collapse
|
4
|
Stoddart P, Satchell SC, Ramnath R. Cerebral microvascular endothelial glycocalyx damage, its implications on the blood-brain barrier and a possible contributor to cognitive impairment. Brain Res 2022; 1780:147804. [DOI: 10.1016/j.brainres.2022.147804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
|
5
|
Cell3: a new vision for study of the endomembrane system in mammalian cells. Biosci Rep 2021; 41:230388. [PMID: 34874399 PMCID: PMC8655501 DOI: 10.1042/bsr20210850c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The endomembrane system of mammalian cells provides massive capacity for the segregation of biochemical reactions into discrete locations. The individual organelles of the endomembrane system also require the ability to precisely transport material between these compartments in order to maintain cell homeostasis; this process is termed membrane traffic. For several decades, researchers have been systematically identifying and dissecting the molecular machinery that governs membrane trafficking pathways, with the overwhelming majority of these studies being carried out in cultured cells growing as monolayers. In recent years, a number of methodological innovations have provided the opportunity for cultured cells to be grown as 3-dimensional (3D) assemblies, for example as spheroids and organoids. These structures have the potential to better replicate the cellular environment found in tissues and present an exciting new opportunity for the study of cell function. In this mini-review, we summarize the main methods used to generate 3D cell models and highlight emerging studies that have started to use these models to study basic cellular processes. We also describe a number of pieces of work that potentially provide the basis for adaptation for deeper study of how membrane traffic is coordinated in multicellular assemblies. Finally, we comment on some of the technological challenges that still need to be overcome if 3D cell biology is to become a mainstream tool toward deepening our understanding of the endomembrane system in mammalian cells.
Collapse
|
6
|
Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D Bioprinting by Nozzle-Free Acoustic Droplet Ejection. SMALL METHODS 2021; 5:e2000971. [PMID: 34927902 DOI: 10.1002/smtd.202000971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting allows the manufacture of complex cell-laden hydrogel constructs that can mature into tissue replacements in subsequent cell culture processes. The nozzles used in currently available bioprinters limit the print resolution and at dimensions below 100 µm clogging is expected. Most critically, the reduction of nozzle diameter also increases shear stress during printing. At critical shear stress, mechanical damage to printed cells triggers cell death. To overcome these limitations, a novel 3D bioprinting method based on the principle of acoustic droplet ejection (ADE) is introduced here. The absence of a nozzle in this method minimizes critical shear stress. A numerical simulation reveals that maximum shear stress during the ADE process is 2.7 times lower than with a Ø150 µm microvalve nozzle. Printing of cell clusters contained in droplets at the millimeter length scale, as well as in droplets the size of a single cell, is feasible. The precise 3D build-up of cell-laden structures is demonstrated and evidence is provided that there are no negative effects on stem cell morphology, proliferation, or differentiation capacities. This multiscale acoustic bioprinting technique thus holds promise for cell-preserving creation of complex and individualized cell-laden 3D hydrogel structures.
Collapse
Affiliation(s)
- Stefan Jentsch
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Benedikt Gundert
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Waters SL, Schumacher LJ, El Haj AJ. Regenerative medicine meets mathematical modelling: developing symbiotic relationships. NPJ Regen Med 2021; 6:24. [PMID: 33846347 PMCID: PMC8042047 DOI: 10.1038/s41536-021-00134-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Successful progression from bench to bedside for regenerative medicine products is challenging and requires a multidisciplinary approach. What has not yet been fully recognised is the potential for quantitative data analysis and mathematical modelling approaches to support this process. In this review, we highlight the wealth of opportunities for embedding mathematical and computational approaches within all stages of the regenerative medicine pipeline. We explore how exploiting quantitative mathematical and computational approaches, alongside state-of-the-art regenerative medicine research, can lead to therapies that potentially can be more rapidly translated into the clinic.
Collapse
Affiliation(s)
- S L Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - L J Schumacher
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Zhang Y, Ling Y, Zhang D, Wang M, Purslow C, Yang Y, Li C, Huang Z. Quantitative measurement of mechanical properties in wound healing processes in a corneal stroma model by using vibrational optical coherence elastography (OCE). BIOMEDICAL OPTICS EXPRESS 2021; 12:588-603. [PMID: 33659091 PMCID: PMC7899504 DOI: 10.1364/boe.404096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 05/11/2023]
Abstract
Corneal wound healing, caused by frequent traumatic injury to the cornea and increasing numbers of refractive surgeries, has become a vital clinical problem. In the cornea, wound healing is an extremely complicated process. However, little is known about how the biomechanical changes in wound healing response of the cornea. Collagen-based hydrogels incorporating corneal cells are suitable for replicating a three-dimensional (3D) equivalent of the cornea in-vitro. In this study, the mechanical properties of corneal stroma models were quantitatively monitored by a vibrational optical coherence elastography (OCE) system during continuous culture periods. Specifically, human corneal keratocytes were seeded at 5 × 105 cells/mL in the hydrogels with a collagen concentration of 3.0 mg/mL. The elastic modulus of the unwounded constructs increased from 2.950 ± 0.2 kPa to 11.0 ± 1.4 kPa, and the maximum thickness decreased from 1.034 ± 0.1 mm to 0.464 ± 0.09 mm during a 15-day culture period. Furthermore, a traumatic wound in the construct was introduced with a size of 500 µm. The elastic modulus of the neo-tissue in the wound area increased from 1.488 ± 0.4 kPa to 6.639 ± 0.3 kPa over 13 days. This study demonstrates that the vibrational OCE system is capable of quantitative monitoring the changes in mechanical properties of a corneal stroma wound model during continuous culture periods and improves our understanding on corneal wound healing processes.
Collapse
Affiliation(s)
- Yilong Zhang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Yuting Ling
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Duo Zhang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Mingkai Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Christine Purslow
- Thea Pharmaceuticals Ltd, Keele University Science & Innovation Park, Innovation Way, Stoke-on-Trent, ST5 5NT, UK
| | - Ying Yang
- Guy Hilton Research Center, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, Scotland, UK
| |
Collapse
|
9
|
Cosgun ZC, Fels B, Kusche-Vihrog K. Nanomechanics of the Endothelial Glycocalyx. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:732-741. [DOI: 10.1016/j.ajpath.2019.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
|
10
|
Abstract
Translation of regenerative therapies to the patient-bench-to-bedside-is one of the global multidisciplinary challenges of our time. New cell-based therapies are reaching the clinic through staged trials leading eventually to routine adoption. The roots of stem cell therapy lie in surgical practice and transplantation medicine with multiple multidisciplinary challenges emerging to support the new therapies. Control of stem cell behavior in line with regulatory confidence is an example of these challenges. One successful journey from bench-to-bedside is the generation of cartilage through autologous cell-based approaches for use in the repair of the knee joint. An analysis of this journey in Europe reveals success and failure; new initiatives include adopting more quantitative modelling and "organ on a chip" approaches to be used in clinical translation reducing experimental time and redressing the lack of preclinical models. The current state and challenges for the field are outlined with the question posed, "are we there yet?"
Collapse
Affiliation(s)
- Alicia J El Haj
- Healthcare Technology Institute, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Yamada KM, Collins JW, Cruz Walma DA, Doyle AD, Morales SG, Lu J, Matsumoto K, Nazari SS, Sekiguchi R, Shinsato Y, Wang S. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int J Exp Pathol 2019; 100:144-152. [PMID: 31179622 DOI: 10.1111/iep.12329] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
This review describes how direct visualization of the dynamic interactions of cells with different extracellular matrix microenvironments can provide novel insights into complex biological processes. Recent studies have moved characterization of cell migration and invasion from classical 2D culture systems into 1D and 3D model systems, revealing multiple differences in mechanisms of cell adhesion, migration and signalling-even though cells in 3D can still display prominent focal adhesions. Myosin II restrains cell migration speed in 2D culture but is often essential for effective 3D migration. 3D cell migration modes can switch between lamellipodial, lobopodial and/or amoeboid depending on the local matrix environment. For example, "nuclear piston" migration can be switched off by local proteolysis, and proteolytic invadopodia can be induced by a high density of fibrillar matrix. Particularly, complex remodelling of both extracellular matrix and tissues occurs during morphogenesis. Extracellular matrix supports self-assembly of embryonic tissues, but it must also be locally actively remodelled. For example, surprisingly focal remodelling of the basement membrane occurs during branching morphogenesis-numerous tiny perforations generated by proteolysis and actomyosin contractility produce a microscopically porous, flexible basement membrane meshwork for tissue expansion. Cells extend highly active blebs or protrusions towards the surrounding mesenchyme through these perforations. Concurrently, the entire basement membrane undergoes translocation in a direction opposite to bud expansion. Underlying this slowly moving 2D basement membrane translocation are highly dynamic individual cell movements. We conclude this review by describing a variety of exciting research opportunities for discovering novel insights into cell-matrix interactions.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Joshua W Collins
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shaimar Gonzalez Morales
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Jiaoyang Lu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shayan S Nazari
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Yoshinari Shinsato
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Zarandi NP, Galdon G, Kogan S, Atala A, Sadri-Ardekani H. Cryostorage of immature and mature human testis tissue to preserve spermatogonial stem cells (SSCs): a systematic review of current experiences toward clinical applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:23-38. [PMID: 30013372 PMCID: PMC6039063 DOI: 10.2147/sccaa.s137873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While the survival rate of children with cancer is increasing, preserving fertility for prepubertal boys is still a challenge. Although intracytoplasmic sperm injection (ICSI) using frozen sperms has revolutionized infertility treatment, it is not applicable for the patients who undergo chemotherapy before puberty since spermatogenesis has not begun. Therefore, preserving spermatogonial stem cells (SSCs) as an experimental option can be provided to prepubertal patients at a risk of damage or loss of their SSCs due to cancer treatments and developmental or genetic disorders. Using frozen SSCs in testicular tissue, successful SSC autotransplantation in mouse and nonhuman primates has shown a promising future for SSC-based cell therapy. Cryopreservation of testicular tissue containing SSCs is the first step to translate SSC-based cell therapy into clinical male infertility treatment, and in the investigation into SSCs, it is very important to evaluate their quantity and functionality during this process. This systematic review summarizes the published data on cryopreservation techniques in human testis tissue for potential utilization in future clinical applications.
Collapse
Affiliation(s)
- Nima Pourhabibi Zarandi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Guillermo Galdon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Stanley Kogan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA, .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA,
| |
Collapse
|