1
|
Kim BH, Seo SW, Park YH, Kim J, Kim HJ, Jang H, Yun J, Kim M, Kim JP. Clinical application of sparse canonical correlation analysis to detect genetic associations with cortical thickness in Alzheimer's disease. Front Neurosci 2024; 18:1428900. [PMID: 39381682 PMCID: PMC11458562 DOI: 10.3389/fnins.2024.1428900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cerebral cortex atrophy. In this study, we used sparse canonical correlation analysis (SCCA) to identify associations between single nucleotide polymorphisms (SNPs) and cortical thickness in the Korean population. We also investigated the role of the SNPs in neurological outcomes, including neurodegeneration and cognitive dysfunction. Methods We recruited 1125 Korean participants who underwent neuropsychological testing, brain magnetic resonance imaging, positron emission tomography, and microarray genotyping. We performed group-wise SCCA in Aβ negative (-) and Aβ positive (+) groups. In addition, we performed mediation, expression quantitative trait loci, and pathway analyses to determine the functional role of the SNPs. Results We identified SNPs related to cortical thickness using SCCA in Aβ negative and positive groups and identified SNPs that improve the prediction performance of cognitive impairments. Among them, rs9270580 was associated with cortical thickness by mediating Aβ uptake, and three SNPs (rs2271920, rs6859, rs9270580) were associated with the regulation of CHRNA2, NECTIN2, and HLA genes. Conclusion Our findings suggest that SNPs potentially contribute to cortical thickness in AD, which in turn leads to worse clinical outcomes. Our findings contribute to the understanding of the genetic architecture underlying cortical atrophy and its relationship with AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - JiHyun Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jihwan Yun
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wu J, Chen Y, Wang P, Caselli RJ, Thompson PM, Wang J, Wang Y. Integrating Transcriptomics, Genomics, and Imaging in Alzheimer's Disease: A Federated Model. FRONTIERS IN RADIOLOGY 2022; 1:777030. [PMID: 37492173 PMCID: PMC10365097 DOI: 10.3389/fradi.2021.777030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomics-the study of gene expression-also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Panwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Vilor-Tejedor N, Garrido-Martín D, Rodriguez-Fernandez B, Lamballais S, Guigó R, Gispert JD. Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO! Comput Struct Biotechnol J 2021; 19:5800-5810. [PMID: 34765095 PMCID: PMC8567328 DOI: 10.1016/j.csbj.2021.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Imaging genetic studies aim to test how genetic information influences brain structure and function by combining neuroimaging-based brain features and genetic data from the same individual. Most studies focus on individual correlation and association tests between genetic variants and a single measurement of the brain. Despite the great success of univariate approaches, given the capacity of neuroimaging methods to provide a multiplicity of cerebral phenotypes, the development and application of multivariate methods become crucial. In this article, we review novel methods and strategies focused on the analysis of multiple phenotypes and genetic data. We also discuss relevant aspects of multi-trait modelling in the context of neuroimaging data.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | | | - Sander Lamballais
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
4
|
Sheng J, Wang L, Cheng H, Zhang Q, Zhou R, Shi Y. Strategies for multivariate analyses of imaging genetics study in Alzheimer's disease. Neurosci Lett 2021; 762:136147. [PMID: 34332030 DOI: 10.1016/j.neulet.2021.136147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease primarily affecting the elderly population. Early diagnosis of AD is critical for the management of this disease. Imaging genetics examines the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on brain structure and function and many novel approaches of imaging genetics are proposed for studying AD. We review and synthesize the Alzheimer's Disease Neuroimaging Initiative (ADNI) genetic associations with quantitative disease endophenotypes including structural and functional neuroimaging, diffusion tensor imaging (DTI), positron emission tomography (PET), and fluid biomarker assays. In this review, we survey recent publications using neuroimaging and genetic data of AD, with a focus on methods capturing multivariate effects accommodating the large number variables from both imaging data and genetic data. We review methods focused on bridging the imaging and genetic data by establishing genotype-phenotype association, including sparse canonical correlation analysis, parallel independent component analysis, sparse reduced rank regression, sparse partial least squares, genome-wide association study, and so on. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future pharmaceutical therapy and biomarker development.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; College of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Rougang Zhou
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Mstar Technologies Inc., Hangzhou, Zhejiang 310018, China
| | - Yuchen Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
5
|
Zhuang X, Yang Z, Cordes D. A technical review of canonical correlation analysis for neuroscience applications. Hum Brain Mapp 2020; 41:3807-3833. [PMID: 32592530 PMCID: PMC7416047 DOI: 10.1002/hbm.25090] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Collecting comprehensive data sets of the same subject has become a standard in neuroscience research and uncovering multivariate relationships among collected data sets have gained significant attentions in recent years. Canonical correlation analysis (CCA) is one of the powerful multivariate tools to jointly investigate relationships among multiple data sets, which can uncover disease or environmental effects in various modalities simultaneously and characterize changes during development, aging, and disease progressions comprehensively. In the past 10 years, despite an increasing number of studies have utilized CCA in multivariate analysis, simple conventional CCA dominates these applications. Multiple CCA-variant techniques have been proposed to improve the model performance; however, the complicated multivariate formulations and not well-known capabilities have delayed their wide applications. Therefore, in this study, a comprehensive review of CCA and its variant techniques is provided. Detailed technical formulation with analytical and numerical solutions, current applications in neuroscience research, and advantages and limitations of each CCA-related technique are discussed. Finally, a general guideline in how to select the most appropriate CCA-related technique based on the properties of available data sets and particularly targeted neuroscience questions is provided.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
- University of ColoradoBoulderColoradoUSA
- Department of Brain HealthUniversity of NevadaLas VegasNevadaUSA
| |
Collapse
|