1
|
Zheng DM, Wang X, Liu Q, Sun YR, Ma WT, Li L, Yang Z, Tcherkez G, Adams MA, Yang Y, Gong XY. Temperature responses of leaf respiration in light and darkness are similar and modulated by leaf development. THE NEW PHYTOLOGIST 2024; 241:1435-1446. [PMID: 37997699 DOI: 10.1111/nph.19428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.
Collapse
Affiliation(s)
- Ding Ming Zheng
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| | - Qi Liu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yan Ran Sun
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zhijie Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Mark A Adams
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, 365000, China
- Fujian Provincial Key Laboratory for Plant Eco-Physiology, Fuzhou, 350117, China
| |
Collapse
|
2
|
Jiang Q, Hua X, Shi H, Liu J, Yuan Y, Li Z, Li S, Zhou M, Yin C, Dou M, Qi N, Wang Y, Zhang M, Ming R, Tang H, Zhang J. Transcriptome dynamics provides insights into divergences of the photosynthesis pathway between Saccharum officinarum and Saccharum spontaneum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1278-1294. [PMID: 36648196 DOI: 10.1111/tpj.16110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saccharum spontaneum and Saccharum officinarum contributed to the genetic background of modern sugarcane cultivars. Saccharum spontaneum has shown a higher net photosynthetic rate and lower soluble sugar than S. officinarum. Here, we analyzed 198 RNA-sequencing samples to investigate the molecular mechanisms for the divergences of photosynthesis and sugar accumulation between the two Saccharum species. We constructed gene co-expression networks based on differentially expressed genes (DEGs) both for leaf developmental gradients and diurnal rhythm. Our results suggested that the divergence of sugar accumulation may be attributed to the enrichment of major carbohydrate metabolism and the oxidative pentose phosphate pathway. Compared with S. officinarum, S. spontaneum DEGs showed a high enrichment of photosynthesis and contained more complex regulation of photosynthesis-related genes. Noticeably, S. spontaneum lacked gene interactions with sulfur assimilation stimulated by photorespiration. In S. spontaneum, core genes related to clock and photorespiration displayed a sensitive regulation by the diurnal rhythm and phase-shift. Small subunit of Rubisco (RBCS) displayed higher expression in the source tissues of S. spontaneum. Additionally, it was more sensitive under a diurnal rhythm, and had more complex gene networks than that in S. officinarum. This indicates that the differential regulation of RBCS Rubisco contributed to photosynthesis capacity divergence in both Saccharum species.
Collapse
Affiliation(s)
- Qing Jiang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Huihong Shi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jia Liu
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Zhen Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangyu Li
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meiqing Zhou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongyang Yin
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meijie Dou
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nameng Qi
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjun Wang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Ray Ming
- Department of Plant Biology, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Haibao Tang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jisen Zhang
- Fujian Province Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| |
Collapse
|
3
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Bathellier C, Yu LJ, Farquhar GD, Coote ML, Lorimer GH, Tcherkez G. Ribulose 1,5-bisphosphate carboxylase/oxygenase activates O 2 by electron transfer. Proc Natl Acad Sci U S A 2020; 117:24234-24242. [PMID: 32934141 PMCID: PMC7533879 DOI: 10.1073/pnas.2008824117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the cornerstone of atmospheric CO2 fixation by the biosphere. It catalyzes the addition of CO2 onto enolized ribulose 1,5-bisphosphate (RuBP), producing 3-phosphoglycerate which is then converted to sugars. The major problem of this reaction is competitive O2 addition, which forms a phosphorylated product (2-phosphoglycolate) that must be recycled by a series of biochemical reactions (photorespiratory metabolism). However, the way the enzyme activates O2 is still unknown. Here, we used isotope effects (with 2H, 25Mg, and 18O) to monitor O2 activation and assess the influence of outer sphere atoms, in two Rubisco forms of contrasted O2/CO2 selectivity. Neither the Rubisco form nor the use of solvent D2O and deuterated RuBP changed the 16O/18O isotope effect of O2 addition, in clear contrast with the 12C/13C isotope effect of CO2 addition. Furthermore, substitution of light magnesium (24Mg) by heavy, nuclear magnetic 25Mg had no effect on O2 addition. Therefore, outer sphere protons have no influence on the reaction and direct radical chemistry (intersystem crossing with triplet O2) does not seem to be involved in O2 activation. Computations indicate that the reduction potential of enolized RuBP (near 0.49 V) is compatible with superoxide (O2•-) production, must be insensitive to deuteration, and yields a predicted 16O/18O isotope effect and energy barrier close to observed values. Overall, O2 undergoes single electron transfer to form short-lived superoxide, which then recombines to form a peroxide intermediate.
Collapse
Affiliation(s)
- Camille Bathellier
- Elementar France, Spectrométrie de Masse Isotopique, 69428 Lyon Cedex 3, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Li-Juan Yu
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - Graham D Farquhar
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
| | - Michelle L Coote
- Australian Research Council Centre of Excellence for Electromaterials Science, Research School of Chemistry, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601 Canberra ACT, Australia;
- Institut de Recherche en Horticulture et Semences, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Université d'Angers, 49070 Beaucouzé, France
| |
Collapse
|
5
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|