1
|
Aybakan E, Kocagoz T, Can O. Nicking Activity of M13 Bacteriophage Protein 2. Int J Mol Sci 2025; 26:789. [PMID: 39859503 PMCID: PMC11765958 DOI: 10.3390/ijms26020789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro. For these purposes, the gene encoding P2 was cloned in Escherichia coli and expressed as a hybrid protein together with a green fluorescent protein (P2-GFP). P2-GFP was purified via metal affinity chromatography, and its nicking activity was determined by conversion of supercoiled DNA to open circular or linear forms. We discovered that, among the two loops of the f1 origin defined previously, P2 can recognize just the A1 loop. When a supercoiled plasmid containing the f1 origin was treated with P2-GFP, the plasmid was present in an open circular form, indicating that a nick was created on only one of the strands. However, when the A1 loop sequence was inserted into the 3' ends of both strands by cloning a PCR product obtained by primers with the A1 loop sequence, the plasmid was linearized by treatment with P2-GFP, indicating that nicks were created on both strands. Certain infectious diseases are caused by single-stranded DNA viruses, and some of them have specific nicking enzymes that enable strand displacement and free 3' end of a single strand that works as a primer for their replication mechanisms like M13 bacteriophages, such as parvovirus B19. Despite there being different host viruses such as bacteria and humans, their DNA replication mechanisms are very similar in this concept. Investigating the features of the P2-nicking enzyme may deepen the understanding of human pathogenic single-stranded viruses and facilitate the development of drugs that inhibit viral replication.
Collapse
Affiliation(s)
- Esma Aybakan
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| | - Tanil Kocagoz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye;
| |
Collapse
|
2
|
Brišar N, Šuster K, Cör A. Preparation of Phage Display cDNA Libraries for Identifying Immunogenic Tumor Antigens: Challenges in Functional cDNA Presentation and Approaches to Overcoming Them. Viruses 2024; 16:1855. [PMID: 39772164 PMCID: PMC11680138 DOI: 10.3390/v16121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research. This review examines the discovery of tumour antigens using phage display technology, emphasising the construction of cDNA libraries, their subsequent display on bacteriophages and the utilisation of diverse biopanning techniques. These elements play a pivotal role in advancing the discovery of novel tumour antigens and the development of targeted cancer therapies. This review addresses the challenges associated with the filamentous phage display of cDNA libraries and proposes strategies to improve the effectiveness of this approach, encouraging further research for clinical applications.
Collapse
Affiliation(s)
- Nuša Brišar
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Šuster
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia; (K.Š.); (A.C.)
| | - Andrej Cör
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia; (K.Š.); (A.C.)
- Faculty of Education, University of Primorska, 6310 Izola, Slovenia
| |
Collapse
|
3
|
Bull JJ, Krone SM. Mathematical comparison of protocols for adapting a bacteriophage to a new host. Virus Evol 2024; 10:veae100. [PMID: 39717707 PMCID: PMC11665826 DOI: 10.1093/ve/veae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Interest in phage therapy-the use of bacterial viruses to treat infections-has increased recently because of the rise of infections with antibiotic-resistant bacteria and the failure to develop new antibiotics to treat those infections. Phages have shown therapeutic promise in recent work, and successful treatment minimally requires giving the patient a phage that will grow on their infecting bacterium. Although nature offers a bountiful and diverse supply of phages, there have been a surprising number of patient infections that could not be treated with phages because no suitable phage was found to kill the patient's bacterium. Here, we develop computational models to analyze an alternative approach to obtaining phages with new host ranges-directed evolution via laboratory propagation of phages to select mutants that can grow on a new host. The models separately explore alternative directed evolution protocols for phage variants that overcome three types of bacterial blocks to phage growth: a block in adsorption, temperate phage immunity to superinfection, and abortive infection. Protocols assume serial transfer to amplify pre-existing, small-effect mutants that are initially rare. Best protocols are sensitive to the nature of the block, and the models provide several insights for enhancing success specific to each case. A common result is that low dilution rates between transfers are beneficial in reducing the mutant growth rate needed to ascend. Selection to overcome an adsorption block is insensitive to many protocol variations but benefits from long selection times between transfers. A temperate phage selected to grow on its lysogens can evolve in any of three phenotypes, but a common protocol favors the desired changes in all three. Abortive infection appears to be the least amenable to evolving phage growth because it is prone to select phages that avoid infection.
Collapse
Affiliation(s)
- James J Bull
- Department of Biological Sciences, University of Idaho, 875 Perimeter drive, Moscow, ID 83844, United States
- Institute for Modeling Collaboration and Innovation, University of Idaho, 875 Perimeter drive, Moscow, ID 83844, United States
| | - Stephen M Krone
- Institute for Modeling Collaboration and Innovation, University of Idaho, 875 Perimeter drive, Moscow, ID 83844, United States
- Department of Mathematics and Statistical Science, University of Idaho, 875 Perimeter drive, Moscow, ID 83844, United States
| |
Collapse
|
4
|
Abstract
The most common application of phage-display technology is the discovery of peptides or proteins that specifically bind some molecule or other substance of interest-for example, antibodies that specifically bind an antigen. The discovery process starts with a library encompassing a very large array of proteins or peptides with a great diversity of binding specificities-for example, single-chain antibodies with a great diversity of antigen-binding sites. Each member of the array is displayed on the surface of hundreds to billions of identical virus particles (virions) belonging to a single-phage clone; the library as a whole comprises millions to billions of such clones, all mixed together in a single vessel. Affinity selection is the process by which a molecule or substance of interest-generically called the selector-is used to select very rare clones in the library displaying proteins or peptides that happen to bind the selector with high affinity and selectivity. Here, I explain general principles guiding a successful affinity-selection project-principles grounded in phage biology, kinetics of reversible binding, technological advances, and the practical experience of thousands of investigators around the globe.
Collapse
Affiliation(s)
- George P Smith
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
5
|
Dong J, Zhang Q, Yang J, Zhao Y, Miao Z, Pei S, Qin H, Jing C, Wen G, Zhang A, Tao P. BacScan: a novel genome-wide strategy for uncovering broadly immunogenic proteins in bacteria. Front Immunol 2024; 15:1392456. [PMID: 38779673 PMCID: PMC11109440 DOI: 10.3389/fimmu.2024.1392456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.
Collapse
Affiliation(s)
- Junhua Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yacan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Zhuangxia Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Siyang Pei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Huan Qin
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Changwei Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
6
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
7
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
8
|
Zhou X, Wang Y, Bao M, Chu Y, Liu R, Chen Q, Lin Y. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers. Appl Microbiol Biotechnol 2024; 108:221. [PMID: 38372795 PMCID: PMC10876719 DOI: 10.1007/s00253-024-13058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Cervical cancer is a major global health concern, characterized by its high incidence and mortality rates. The detection of tumor markers is crucial for managing cancer, making treatment decisions, and monitoring disease progression. Vascular endothelial growth factor (VEGF) and programmed death-ligand 1 (PDL-1) are key targets in cervical cancer therapy and valuable biomarkers in predicting treatment response and prognosis. In this study, we found that combining the measurement of VEGF and soluble PDL-1 can be used for diagnosing and evaluating the progression of cervical cancer. To explore a more convenient approach for detecting and assessing cervical cancer, we designed and prepared an engineered fd bacteriophage, a human-safe viral nanofiber, equipped with two peptides targeting VEGF and PD-L1. The dual-display phage nanofiber specifically recognizes and binds to both proteins. Utilizing this nanofiber as a novel capture agent, we developed a new enzyme-linked immunosorbent assay (ELISA) method. This method shows significantly enhanced detection sensitivity compared to conventional ELISA methods, which use either anti-VEGF or anti-PD-L1 antibodies as capture agents. Therefore, the phage dual-display nanofiber presents significant potential in detecting cancer markers, evaluating medication efficacy, and advancing immunotherapy drug development. KEY POINTS: • The combined measurement of VEGF and soluble Programmed Death-Ligand 1(sPD-L1) demonstrates an additive effect in the diagnosis of cervical cancer. Fd phage nanofibers have been ingeniously engineered to display peptides that bind to VEGF and PD-L1, enabling the simultaneous detection of both proteins within a single assay • Genetically engineered phage nanofibers, adorned with two distinct peptides, can be utilized for the diagnosis and prognosis of cancer and can be mass-produced cost-effectively through bacterial infections • Employing dual-display fd phage nanofibers as capture probes, the phage ELISA method exhibited significantly enhanced detection sensitivity compared to traditional sandwich ELISA. Furthermore, phage ELISA facilitates the detection of a single protein or the simultaneous detection of multiple proteins, rendering them powerful tools for protein analysis and diagnosis across various fields, including cancer research.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| | - Meijing Bao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yuqing Chu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Ruixue Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yang Lin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| |
Collapse
|
9
|
Javorčík PN, Harms A. Isolation and sequencing of a novel inovirus, "Copypasta," from Rhine River water. Microbiol Resour Announc 2024; 13:e0118023. [PMID: 38265206 PMCID: PMC10868210 DOI: 10.1128/mra.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
We present a new inovirus named Copypasta isolated from the Rhine River that infects Escherichia coli and shows the expected filamentous morphology. Copypasta has a circular single-stranded DNA genome that is 6,408 nt long and harbors 12 protein-coding genes.
Collapse
Affiliation(s)
- P. Nathael Javorčík
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Alexander Harms
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Kamiński B, Paczesny J. Bacteriophage Challenges in Industrial Processes: A Historical Unveiling and Future Outlook. Pathogens 2024; 13:152. [PMID: 38392890 PMCID: PMC10893365 DOI: 10.3390/pathogens13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Humans have used fermentation processes since the Neolithic period, mainly to produce beverages. The turning point occurred in the 1850s, when Louis Pasteur discovered that fermentation resulted from the metabolism of living microorganisms. This discovery led to the fast development of fermented food production. The importance of industrial processes based on fermentation significantly increased. Many branches of industry rely on the metabolisms of bacteria, for example, the dairy industry (cheese, milk, yogurts), pharmaceutical processes (insulin, vaccines, antibiotics), or the production of chemicals (acetone, butanol, acetic acid). These are the mass production processes involving a large financial outlay. That is why it is essential to minimize threats to production. One major threat affecting bacteria-based processes is bacteriophage infections, causing substantial economic losses. The first reported phage infections appeared in the 1930s, and companies still struggle to fight against phages. This review shows the cases of phage infections in industry and the most common methods used to prevent phage infections.
Collapse
Affiliation(s)
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
11
|
Brišar N, Šuster K, Brezar SK, Vidmar R, Fonović M, Cör A. An Engineered M13 Filamentous Nanoparticle as an Antigen Carrier for a Malignant Melanoma Immunotherapeutic Strategy. Viruses 2024; 16:232. [PMID: 38400008 PMCID: PMC10893169 DOI: 10.3390/v16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Bacteriophages, prokaryotic viruses, hold great potential in genetic engineering to open up new avenues for vaccine development. Our study aimed to establish engineered M13 bacteriophages expressing MAGE-A1 tumor peptides as a vaccine for melanoma treatment. Through in vivo experiments, we sought to assess their ability to induce robust immune responses. Using phage display technology, we engineered two M13 bacteriophages expressing MAGE-A1 peptides as fusion proteins with either pVIII or pIIII coat proteins. Mice were intraperitoneally vaccinated three times, two weeks apart, using two different engineered bacteriophages; control groups received a wild-type bacteriophage. Serum samples taken seven days after each vaccination were analyzed by ELISA assay, while splenocytes harvested seven days following the second boost were evaluated by ex vivo cytotoxicity assay. Fusion proteins were confirmed by Western blot and nano-LC-MS/MS. The application of bacteriophages was safe, with no adverse effects on mice. Engineered bacteriophages effectively triggered immune responses, leading to increased levels of anti-MAGE-A1 antibodies in proportion to the administered bacteriophage dosage. Anti-MAGE-A1 antibodies also exhibited a binding capability to B16F10 tumor cells in vitro, as opposed to control samples. Splenocytes demonstrated enhanced CTL cytotoxicity against B16F10 cells. We have demonstrated the immunogenic capabilities of engineered M13 bacteriophages, emphasizing their potential for melanoma immunotherapy.
Collapse
Affiliation(s)
- Nuša Brišar
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Šuster
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia;
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia;
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (R.V.); (M.F.)
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (R.V.); (M.F.)
| | - Andrej Cör
- Valdoltra Orthopaedic Hospital, 6280 Ankaran, Slovenia;
- Faculty of Education, University of Primorska, 6310 Izola, Slovenia
| |
Collapse
|
12
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
13
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
14
|
Thi HV, Ngo AD, Tran LT, Chu DT. Phage for cancer therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:225-239. [PMID: 37770174 DOI: 10.1016/bs.pmbts.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Cancer is currently a global health challenge, characterized by dysfunction of organs due to the uncontrolled growth of cells exponentially. The therapies used to treat cancer in patients so far are widely used. However, there are also some problems, such as the high cost of surgery and chemotherapy. Thus, there are many barriers to care for patients with cancer, especially in low and middle-income countries. In addition, the many risks and adverse effects of radiation treatment. Therefore, to reduce mortality in patients with the disease, we need a newer therapy with more targeted treatment, fewer side effects, and cheaper cost. The application of bacteria in cancer treatment was first developed in 1983. Currently, this therapy is attracting the attention of scientists due to its great potential in cancer treatment. This chapter discusses the successful research on the bacteriophage for cancer, the mechanism and its potential. In addition, some types of bacteria that are most important for cancer treatment and limitations on the widespread application of this therapy were also mentioned. Reviewing all the researches on bacteriotherapy in cancer are essential to increase the knowledge in this area and make this therapy more optimal in the future.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Linh-Thao Tran
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
15
|
Machera SJ, Niedziółka-Jönsson J, Jönsson-Niedziółka M, Szot-Karpińska K. Determination of the Dissociation Constant for Polyvalent Receptors Using ELISA: A Case of M13 Phages Displaying Troponin T-Specific Peptides. ACS OMEGA 2023; 8:26253-26262. [PMID: 37521637 PMCID: PMC10373194 DOI: 10.1021/acsomega.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Phage-derived affinity peptides have become widespread thanks to their easy selection via phage display. Interactions between a target protein and its specific peptide are similar to those between antibodies and antigens. The strength of these non-covalent complexes may be described by the dissociation constant (Kd). In this paper, protein-specific peptides are exposed on the pIII protein present in the M13 bacteriophage virion with up to five copies. Therefore, one phage particle can bind from one to five ligands. Here, we discuss the dependences between phage-displayed peptides and their ligands in solution using a model system based on troponin T (TnT) binding phages. Moreover, a method of calculating Kd values from ELISA experiments was developed and is presented. The determined Kd values are in the picomolar range.
Collapse
|
16
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
17
|
Seasonal dynamics of a complex cheilostome bryozoan symbiosis: vertical transfer challenged. Sci Rep 2023; 13:375. [PMID: 36611035 PMCID: PMC9825505 DOI: 10.1038/s41598-022-26251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Symbiotic associations are dynamic systems influenced by both intrinsic and extrinsic factors. Here we describe for the first time the developmental and seasonal changes of the funicular bodies in the bryozoan Dendrobeania fruticosa, which are unique temporary organs of cheilostome bryozoans containing prokaryotic symbionts. Histological and ultrastructural studies showed that these organs undergo strong seasonal modification in the White Sea during the ice-free period. Initially (in June) they play a trophic function and support the development of a large population of bacteria. From June to September, both funicular bodies and bacteria show signs of degradation accompanied by development of presumed virus-like particles (VLPs); these self-organize to hollow spheres inside bacteria and are also detected outside of them. Although the destruction of bacteria coincides with the development of VLPs and spheres, the general picture differs considerably from the known instances of bacteriophagy in bryozoans. We broadly discuss potential routes of bacterial infection in Bryozoa and question the hypothesis of vertical transfer, which, although widely accepted in the literature, is contradicted by molecular, morphological and ecological evidence.
Collapse
|
18
|
Bacteriophage-Mediated Cancer Gene Therapy. Int J Mol Sci 2022; 23:ijms232214245. [PMID: 36430720 PMCID: PMC9697857 DOI: 10.3390/ijms232214245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage-eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy.
Collapse
|
19
|
Tsedev U, Lin CW, Hess GT, Sarkaria JN, Lam FC, Belcher AM. Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS NANO 2022; 16:11676-11691. [PMID: 35830573 DOI: 10.1021/acsnano.1c08720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
M13 bacteriophage (phage) are versatile, genetically tunable nanocarriers that have been recently adapted for use as diagnostic and therapeutic platforms. Applying p3 capsid chlorotoxin fusion with the "inho" circular single-stranded DNA (cssDNA) gene packaging system, we produced miniature chlorotoxin inho (CTX-inho) phage particles with a minimum length of 50 nm that can target intracranial orthotopic patient-derived GBM22 glioblastoma tumors in the brains of mice. Systemically administered indocyanine green conjugated CTX-inho phage accumulated in brain tumors, facilitating shortwave infrared detection. Furthermore, we show that our inho phage can carry cssDNA that are transcriptionally active when delivered to GBM22 glioma cells in vitro. The ability to modulate the capsid display, surface loading, phage length, and cssDNA gene content makes the recombinant M13 phage particle an ideal delivery platform.
Collapse
Affiliation(s)
- Uyanga Tsedev
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ching-Wei Lin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, Unites States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Fred C Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division of Neurosurgery, Saint Elizabeth's Medical Center, Brighton, Massachusetts 02135, United States
| | - Angela M Belcher
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Kondakova OA, Evtushenko EA, Baranov OA, Nikitin NA, Karpova OV. Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications. BIOCHEMISTRY (MOSCOW) 2022; 87:548-558. [PMID: 35790410 PMCID: PMC9201271 DOI: 10.1134/s0006297922060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Structurally modified virus particles can be obtained from the rod-shaped or filamentous virions of plant viruses and bacteriophages by thermal or chemical treatment. They have recently attracted attention of the researchers as promising biogenic platforms for the development of new biotechnologies. This review presents data on preparation, structure, and properties of the structurally modified virus particles. In addition, their biosafety for animals is considered, as well as the areas of application of such particles in biomedicine. A separate section is devoted to one of the most relevant and promising areas for the use of structurally modified plant viruses – design of vaccine candidates based on them.
Collapse
Affiliation(s)
- Olga A Kondakova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Oleg A Baranov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
22
|
Xu S, Zhang G, Wang M, Lin T, Liu W, Wang Y. Phage nanoparticle as a carrier for controlling fungal infection. Appl Microbiol Biotechnol 2022; 106:3397-3403. [PMID: 35501488 DOI: 10.1007/s00253-022-11932-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
A mass of nanocarriers have been exploited and utilized for prevention of fungi, including organic nanomaterials, inorganic nanoparticles, polypeptides, and viruses. Due to biological safety and flexible genetic engineering property, bacteriophages, as bionanoparticles, are widely used in the diagnosis and treatment of microorganisms, which can be easily loaded with proteins and drugs. In particular, random DNAs can be inserted into the genome of phage by phage display technology, and it is possible to obtain the peptide/antibody targeting fungi from phage library. Meanwhile, phages displaying specific peptides are able to conjugate with other nanoparticles, which have both characteristics of peptides and nanomaterials, and have been used for precise detection of fungi. Additionally, phage nanomaterials as carriers can reduce the toxicity of drugs, increase the time of drug circulation, stimulate the immune response, and have an anti-fungal effect by itself. In this review, we summarize the recent applications of bacteriophages on the study of fungi. The improvement of our understanding of bacteriophage will supply new tools for controlling fungal infections. These phage libraries were used to pan the specific peptides for diagnosis, prevention, and treatment of fungi. KEY POINTS: • System fungal infection has no significant clinical symptoms; it is important to develop vaccine, diagnosis, and therapeutic agents to reduce mortality; phage is an ideal carrier for vaccine and drug to stimulate immune response and improve the efficiency of drug, and also can improve the sensitivity of detection • This review summarized recent studies on phage-based fungal vaccine and threw light on the developing therapeutic phage in the treatment of fungal infection.
Collapse
Affiliation(s)
- Songbai Xu
- Department Neurosurg, First Hospital Jilin University, Changchun, People's Republic of China
| | - Guangxin Zhang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Tie Lin
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Liu
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
23
|
A versatile inhibitor of digestive enzymes in Aedes aegypti larvae selected from a pacifastin (TiPI) phage display library. Biochem Biophys Res Commun 2022; 590:139-144. [PMID: 34974302 DOI: 10.1016/j.bbrc.2021.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
In Brazil, the major vector of arboviruses is Aedes aegypti, which can transmit several alpha and flaviviruses. In this work, a pacifastin protease inhibitor library was constructed and used to select mutants for Ae. aegypti larvae digestive enzymes. The library contained a total of 3.25 × 105 cfu with random mutations in the reactive site (P2-P2'). The most successfully selected mutant, TiPI6, a versatile inhibitor, was able to inhibit all three Ae. aegypti larvae proteolytic activities, trypsin-like, chymotrypsin-like and elastase-like activities, with IC50 values of 0.212 nM, 0.107 nM and 0.109 nM, respectively. In conclusion, the TiPI mutated phage display library was shown to be a useful tool for the selection of an inhibitor of proteolytic activities combined in a mix. TiPI6 is capable of controlling all three digestive enzyme activities present in the larval midgut extract. To our knowledge, this is the first time that one inhibitor containing a Gln at the P1 position showed inhibitory activity against trypsin, chymotrypsin, and elastase-like activities. TiPI6 can be a candidate for further larvicidal studies.
Collapse
|
24
|
Davydova EK. Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S146-S110. [PMID: 35501993 PMCID: PMC8802281 DOI: 10.1134/s0006297922140127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Functional Protein Engineering became the hallmark in biomolecule manipulation in the new millennium, building on and surpassing the underlying structural DNA manipulation and recombination techniques developed and employed in the last decades of 20th century. Because of their prominence in almost all biological processes, proteins represent extremely important targets for engineering enhanced or altered properties that can lead to improvements exploitable in healthcare, medicine, research, biotechnology, and industry. Synthetic protein structures and functions can now be designed on a computer and/or evolved using molecular display or directed evolution methods in the laboratory. This review will focus on the recent trends in protein engineering and the impact of this technology on recent progress in science, cancer- and immunotherapies, with the emphasis on the current achievements in basic protein research using synthetic antibody (sABs) produced by phage display pipeline in the Kossiakoff laboratory at the University of Chicago (KossLab). Finally, engineering of the highly specific binding modules, such as variants of Streptococcal protein G with ultra-high orthogonal affinity for natural and engineered antibody scaffolds, and their possible applications as a plug-and-play platform for research and immunotherapy will be described.
Collapse
Affiliation(s)
- Elena K Davydova
- The University of Chicago, Department of Biochemistry and Molecular Biology, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100050. [PMID: 34841341 PMCID: PMC8610337 DOI: 10.1016/j.crmicr.2021.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 16482, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| |
Collapse
|
26
|
Modification of a Tumor-Targeting Bacteriophage for Potential Diagnostic Applications. Molecules 2021; 26:molecules26216564. [PMID: 34770973 PMCID: PMC8588016 DOI: 10.3390/molecules26216564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tumor-targeting bacteriophages can be used as a versatile new platform for the delivery of diagnostic imaging agents and therapeutic cargo. This became possible due to the development of viral capsid modification method. Earlier in our laboratory and using phage display technology, phages to malignant breast cancer cells MDA-MB 231 were obtained. The goal of this study was the optimization of phage modification and the assessment of the effect of the latter on the efficiency of phage particle penetration into MDA-MB 231 cells. METHODS In this work, we used several methods, such as chemical phage modification using FAM-NHS ester, spectrophotometry, phage amplification, sequencing, phage titration, flow cytometry, and confocal microscopy. RESULTS We performed chemical phage modification using different concentrations of FAM-NHS dye (0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM). It was shown that with an increase of the modification degree, the phage titer decreases. The maximum modification coefficient of the phage envelope with the FAM-NHS dye was observed with 4 mM modifying agent and had approximately 804,2 FAM molecules per phage. Through the immunofluorescence staining and flow cytometry methods, it was shown that the modified bacteriophage retains the ability to internalize into MDA-MB-231 cells. The estimation of the number of phages that could have penetrated into one tumor cell was conducted. CONCLUSIONS Optimizing the conditions for phage modification can be an effective strategy for producing tumor-targeting diagnostic and therapeutic agents, i.e., theranostic drugs.
Collapse
|
27
|
Wang Y, Sheng J, Chai J, Zhu C, Li X, Yang W, Cui R, Ge T. Filamentous Bacteriophage-A Powerful Carrier for Glioma Therapy. Front Immunol 2021; 12:729336. [PMID: 34566987 PMCID: PMC8462735 DOI: 10.3389/fimmu.2021.729336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is a life-threatening malignant tumor. Resistance to traditional treatments and tumor recurrence present major challenges in treating and managing this disease, consequently, new therapeutic strategies must be developed. Crossing the blood-brain barrier (BBB) is another challenge for most drug vectors and therapy medications. Filamentous bacteriophage can enter the brain across the BBB. Compared to traditional drug vectors, phage-based drugs offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. Tumor-targeting peptides from phage library and phages displaying targeting peptides are ideal drug delivery agents. This review summarized recent studies on phage-based glioma therapy and shed light on the developing therapeutics phage in the personalized treatment of glioma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
29
|
Hu M, Zhang H, Gu D, Ma Y, Zhou X. Identification of a novel bacterial receptor that binds tail tubular proteins and mediates phage infection of Vibrio parahaemolyticus. Emerg Microbes Infect 2020; 9:855-867. [PMID: 32306848 PMCID: PMC7241545 DOI: 10.1080/22221751.2020.1754134] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The adsorption of phages to hosts is the first step of phage infection. Studies have shown that tailed phages use tail fibres or spikes to recognize bacterial receptors and mediate adsorption. However, whether other phage tail components can also recognize host receptors is unknown. To identify potential receptors, we screened a transposon mutagenesis library of the marine pathogen Vibrio parahaemolyticus and discovered that a vp0980 mutant (vp0980 encodes a predicted transmembrane protein) could not be lysed by phage OWB. Complementation of this mutant with wild-type vp0980 in trans restored phage-mediated lysis. Phage adsorption and confocal microscopy assays demonstrated that phage OWB had dramatically reduced adsorption to the vp0980 mutant compared to that to the wild type. Pulldown assays showed that phage tail tubular proteins A and B (TTPA and TTPB) interact with Vp0980, suggesting that Vp0980 is a TTPA and TTPB receptor. Vp0980 lacking the outer membrane region (aa 114–127) could not bind to TTPA and TTPB, resulting in reduced phage adsorption. These results strongly indicated that TTPA and TTPB binding with their receptor Vp0980 mediates phage adsorption and subsequent bacterial lysis. To the best of our knowledge, this study is the first report of a bacterial receptor for phage tail tubular proteins.
Collapse
Affiliation(s)
- Maozhi Hu
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Hui Zhang
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Dan Gu
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Yi Ma
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
30
|
Abstract
Bacteriophages are interesting entities on the border of biology and chemistry. In nature, they are bacteria parasites, while, after genetic manipulation, they gain new properties, e.g., selectively binding proteins. Owing to this, they may be applied as recognition elements in biosensors. Combining bacteriophages with different transducers can then result in the development of innovative sensor designs that may revolutionize bioanalytics and improve the quality of medical services. Therefore, here, we review the use of bacteriophages, or peptides from bacteriophages, as new sensing elements for the recognition of biomarkers and the construction of the highly effective diagnostics tools.
Collapse
|
31
|
Abstract
Monoclonal antibodies are among the most significant biological tools used in medicine and biology that have revolutionized the field of diagnostics, therapeutics, and targeted drug delivery systems for many diseases. Among them, rabbit monoclonal antibodies have attracted significant attention for having high affinity and specificity. During the past few decades, different techniques have been developed to produce monoclonal antibodies. Single B cell cloning technology offers many advantages compared to other methods and has been used to generate monoclonal antibodies from different species including rabbits. This review briefly describes some of these methods, with main focus on single B cell cloning and production of rabbit monoclonal antibodies.
Collapse
|
32
|
Stern Z, Stylianou DC, Kostrikis LG. The development of inovirus-associated vector vaccines using phage-display technologies. Expert Rev Vaccines 2019; 18:913-920. [PMID: 31373843 PMCID: PMC7103683 DOI: 10.1080/14760584.2019.1651649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages). As vaccine carriers, they have elicited both cellular and humoral responses against a variety of pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are exploited for widespread vaccine development. Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the display of specific antigenic peptides which induce antibody production to prevent or curtail infection. Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the development of different applications of inovirus-based phage display vaccines across a broad range of pathogens and hosts is reviewed. The references cited in this review were selected from established databases based on the authors' knowledge of the study subject. Expert commentary: The importance of phage-display technology has been recently highlighted by the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore, the symbiotic nature of filamentous viruses infecting intestinal F+E. coli strains offers an attractive platform for the development of novel vaccines that stimulate mucosal immunity.
Collapse
Affiliation(s)
- Zachariah Stern
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
33
|
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019; 20:e47427. [PMID: 30952693 PMCID: PMC6549030 DOI: 10.15252/embr.201847427] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophage ("bacteria eaters") or phage is the collective term for viruses that infect bacteria. While most phages are pathogens that kill their bacterial hosts, the filamentous phages of the sub-class Inoviridae live in cooperative relationships with their bacterial hosts, akin to the principal behaviours found in the modern-day sharing economy: peer-to-peer support, to offset any burden. Filamentous phages impose very little burden on bacteria and offset this by providing service to help build better biofilms, or provision of toxins and other factors that increase virulence, or modified behaviours that provide novel motile activity to their bacterial hosts. Past, present and future biotechnology applications have been built on this phage-host cooperativity, including DNA sequencing technology, tools for genetic engineering and molecular analysis of gene expression and protein production, and phage-display technologies for screening protein-ligand and protein-protein interactions. With the explosion of genome and metagenome sequencing surveys around the world, we are coming to realize that our knowledge of filamentous phage diversity remains at a tip-of-the-iceberg stage, promising that new biology and biotechnology are soon to come.
Collapse
Affiliation(s)
- Iain D Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
34
|
Loh B, Kuhn A, Leptihn S. The fascinating biology behind phage display: filamentous phage assembly. Mol Microbiol 2019; 111:1132-1138. [PMID: 30556628 DOI: 10.1111/mmi.14187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the recently awarded Nobel Prize to the inventor of Phage Display, George Smith, the technique has once more gained attention. However, one should not forget about the biology behind the method. Almost always ignored is how the structure of this bacterial virus is assembled. In contrast to lytic phages, filamentous phages are constantly being extruded through the bacterial membranes without lysis. Such filamentous phages are found in all aquatic environments, such as rivers and lakes, in the deep sea, in arctic ice, in hot springs and, associated with their hosts, in plants and animals including humans. While most filamentous phages infect Gram-negative hosts, inoviruses of Gram-positive hosts have also been described. Despite being among the minority within the phage family with an estimate of less than 5%, filamentous phages are real parasites as they exist at the expense of the host, but do not kill it. In contrast to lytic bacteriophages, filamentous phages are assembled in the host's membrane and extruded across the cellular envelope while the bacterium continues to grow. In this review, we focus on this complex and yet poorly understood process of assembly and secretion of filamentous phages.
Collapse
Affiliation(s)
- Belinda Loh
- Zhejiang University School of Medicine, Zhejiang University-Edinburgh University (ZJU-UoE) Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, P.R. China
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, Stuttgart, 70599, Germany
| | - Sebastian Leptihn
- Zhejiang University School of Medicine, Zhejiang University-Edinburgh University (ZJU-UoE) Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, P.R. China
| |
Collapse
|