1
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
2
|
Velappan N, Ferrara F, D’Angelo S, Close D, Naranjo L, Bolding MR, Mozden SC, Troup CB, McCullough DK, Gomez A, Kedge M, Bradbury ARM. Direct selection of functional fluorescent-protein antibody fusions by yeast display. PLoS One 2023; 18:e0280930. [PMID: 36827414 PMCID: PMC9956592 DOI: 10.1371/journal.pone.0280930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/11/2023] [Indexed: 02/26/2023] Open
Abstract
Antibodies are important reagents for research, diagnostics, and therapeutics. Many examples of chimeric proteins combining the specific target recognition of antibodies with complementing functionalities such as fluorescence, toxicity or enzymatic activity have been described. However, antibodies selected solely on the basis of their binding specificities are not necessarily ideal candidates for the construction of chimeras. Here, we describe a high throughput method based on yeast display to directly select antibodies most suitable for conversion to fluorescent chimera. A library of scFv binders was converted to a fluorescent chimeric form, by cloning thermal green protein into the linker between VH and VL, and directly selecting for both binding and fluorescent functionality. This allowed us to directly identify antibodies functional in the single chain TGP format, that manifest higher protein expression, easier protein purification, and one-step binding assays.
Collapse
Affiliation(s)
- Nileena Velappan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | | - Sara D’Angelo
- Specifica Inc., Santa Fe, NM, United States of America
| | - Devin Close
- Arup Laboratories, Salt Lake City, UT, United States of America
| | | | - Madeline R. Bolding
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Sarah C. Mozden
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | | - Donna K. McCullough
- Microbiology Department, University of Tennessee, Knoxville, TN, United States of America
| | - Analyssa Gomez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Marijo Kedge
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | | |
Collapse
|
3
|
Abstract
Phage display has been applied successfully for the rapid isolation of monoclonal antibodies against various targets including infectious diseases, autoantigens, cancer markers, and even small molecules. The main component in any phage display experiment is the availability of an antibody library to carry out the selection process of target-specific antibodies through an iterative process termed as biopanning. To generate human antibody libraries, the antibody repertoire can be obtained from human peripheral blood mononuclear cell (PBMC) or directly from cell-sorted B-cell populations. The choice of antibody isotype is dictated by the nature of the library. Naïve libraries would utilize IgM repertoires, whereas the IgG repertoire is commonly used for immune libraries. Antibody genes are amplified through polymerase chain reaction (PCR) and paired in a combinatorial fashion to expand the diversity of the cloned library repertoire. The protocol here describes the use of a two-step cloning method that can be applied for the construction of either a naïve or immune human antibody library in Fab format followed by the subsequent panning.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
4
|
Zhang T, Liu C, Zheng H, Han X, Lin H, Cao L, Sui J. The specific biopanning of single-domain antibody against haptens based on a functionalized cryogel. J Mol Recognit 2023; 36:e2999. [PMID: 36225143 DOI: 10.1002/jmr.2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Phage display technology is commonly applied for high-throughput screening of single-domain antibodies (sdAbs), and the problem of non-specific adsorption caused by carrier proteins seriously affects the biopanning of single-domain antibodies specific to haptens. In this paper, enrofloxacin (ENR)-functionalized cryogels were prepared by the ethylenediamine (EDA) and carbodiimide methods for application in the biopanning of ENR-specific phages. To improve the efficiency of biopanning, double blocking, a wash solution flow rate of 1 mL/min, and phage pre-incubation were applied to the biopanning process through single-factor experiments. Results of flat colony counting showed that the phage output of AG-ENR cryogels was 15 times higher than that of AG cryogels for the same input amount. And seven complete sequences of ENR-specific shark sdAbs were obtained by monoclonal phage ELISA and sequence alignment. All these results indicate that functionalized cryogels could be used as a novel and efficient method for phage biopanning for single-domain antibodies to haptens.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang Liu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hongwei Zheng
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangning Han
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
DeLuca KF, Mick JE, DeLuca JG. Production and purification of recombinant monoclonal antibodies from human cells based on a primary sequence. STAR Protoc 2022; 3:101915. [PMID: 36595892 PMCID: PMC9763751 DOI: 10.1016/j.xpro.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
There are challenges to using commercially available antibodies generated in animals, including concerns with reproducibility, high costs, and ethical issues. Here, we present a protocol for generating and purifying recombinant antibodies from human HEK293 suspension culture cells from a primary sequence. We describe the steps to generate antibody heavy and light chain plasmids, followed by transfection of the plasmids into cells and purification of antibodies. This protocol can produce high-yield recombinant monoclonal antibodies at a relatively low cost. For complete details on the use and execution of this protocol, please refer to DeLuca et al. (2021).1.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
André AS, Moutinho I, Dias JNR, Aires-da-Silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol 2022; 13:962124. [PMID: 36225354 PMCID: PMC9549074 DOI: 10.3389/fmicb.2022.962124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of hybridoma technology, described by Kohler and Milstein in 1975, and the resulting ability to generate monoclonal antibodies (mAbs) initiated a new era in antibody research and clinical development. However, limitations of the hybridoma technology as a routine antibody generation method in conjunction with high immunogenicity responses have led to the development of alternative approaches for the streamlined identification of most effective antibodies. Within this context, display selection technologies such as phage display, ribosome display, yeast display, bacterial display, and mammalian cell surface display have been widely promoted over the past three decades as ideal alternatives to traditional hybridoma methods. The display of antibodies on phages is probably the most widespread and powerful of these methods and, since its invention in late 1980s, significant technological advancements in the design, construction, and selection of antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. With evolving novel disease targets and the emerging of a new generation of therapeutic antibodies, such as bispecific antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapies, it is clear that phage display is expected to continue to play a central role in antibody development. Nevertheless, for non-standard and more demanding cases aiming to generate best-in-class therapeutic antibodies against challenging targets and unmet medical needs, in vivo phage display selections by which phage libraries are directly injected into animals or humans for isolating and identifying the phages bound to specific tissues offer an advantage over conventional in vitro phage display screening procedures. Thus, in the present review, we will first summarize a general overview of the antibody therapeutic market, the different types of antibody fragments, and novel engineered variants that have already been explored. Then, we will discuss the state-of-the-art of in vivo phage display methodologies as a promising emerging selection strategy for improvement antibody targeting and drug delivery properties.
Collapse
Affiliation(s)
- Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Isa Moutinho
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
7
|
Zhang X, Dong S, Huang Y, Shi H, Chen X, Wang Y, Li Y, Cao D, Wang L. A scFv phage targeting the C. albicans cell wall screened from a bacteriophage-based library of induced immune protection in mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105303. [PMID: 35577227 DOI: 10.1016/j.meegid.2022.105303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
C. albicans is the most prevalent opportunistic fungal and can cause life-threatening systemic infections under certain circumstances. The inefficiency and resistance of traditional therapy make the development of novel techniques indispensable. The main components, proteins and glycoproteins, of the C. albicans cell wall are highly immunogenic and very different from those of the host, making it an ideal source of targets for antifungal drug development. This study aimed to screen and identify specific peptides that bind to the C. albicans cell wall using a phage-display peptide library, and to develop a peptide-based therapy targeted to C. albicans. After four rounds of screening, JC-1 ScFv was found to bind to the C. albicans cell wall specifically, inhibit C. albicans growth and viability in vitro, and protect mice from C. albicans infection in vivo. Further study showed that JC-1 could provoke an immune response in C. albicans-infected mice. These results indicated that JC-1 ScFv screened from a phage-display peptide library had the potential to be developed as a vector for targeting C. albicans.
Collapse
Affiliation(s)
- Xintong Zhang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; The Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Shuai Dong
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China.; Department of obstetrics and gynecology, The First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Yuanyuan Huang
- Department of pediatric outpatient, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China
| | - Hongxi Shi
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Xi Chen
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yicun Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Yan Li
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China
| | - Donghui Cao
- Division of Clinical Research, First Hospital of Jilin University, Changchun City, Jilin Province 130021, PR China..
| | - Li Wang
- Institute of Cytology and Genetics, School of Life Sciences, Northeast Normal University, Changchun City, Jilin Province 130024, PR China..
| |
Collapse
|
8
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Davydova EK. Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S146-S110. [PMID: 35501993 PMCID: PMC8802281 DOI: 10.1134/s0006297922140127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Functional Protein Engineering became the hallmark in biomolecule manipulation in the new millennium, building on and surpassing the underlying structural DNA manipulation and recombination techniques developed and employed in the last decades of 20th century. Because of their prominence in almost all biological processes, proteins represent extremely important targets for engineering enhanced or altered properties that can lead to improvements exploitable in healthcare, medicine, research, biotechnology, and industry. Synthetic protein structures and functions can now be designed on a computer and/or evolved using molecular display or directed evolution methods in the laboratory. This review will focus on the recent trends in protein engineering and the impact of this technology on recent progress in science, cancer- and immunotherapies, with the emphasis on the current achievements in basic protein research using synthetic antibody (sABs) produced by phage display pipeline in the Kossiakoff laboratory at the University of Chicago (KossLab). Finally, engineering of the highly specific binding modules, such as variants of Streptococcal protein G with ultra-high orthogonal affinity for natural and engineered antibody scaffolds, and their possible applications as a plug-and-play platform for research and immunotherapy will be described.
Collapse
Affiliation(s)
- Elena K Davydova
- The University of Chicago, Department of Biochemistry and Molecular Biology, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
DeLuca KF, Mick JE, Ide AH, Lima WC, Sherman L, Schaller KL, Anderson SM, Zhao N, Stasevich TJ, Varma D, Nilsson J, DeLuca JG. Generation and diversification of recombinant monoclonal antibodies. eLife 2021; 10:72093. [PMID: 34970967 PMCID: PMC8763395 DOI: 10.7554/elife.72093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Amy Hodges Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Wanessa C Lima
- Geneva Antibody Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lori Sherman
- CU Cancer Center Cell Technologies Shared Resource, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kristin L Schaller
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Dileep Varma
- Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Germany
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| |
Collapse
|
11
|
Phage Display Technique as a Tool for Diagnosis and Antibody Selection for Coronaviruses. Curr Microbiol 2021; 78:1124-1134. [PMID: 33687511 PMCID: PMC7941128 DOI: 10.1007/s00284-021-02398-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand–receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host–pathogen interactions and assist novel strategies of drug discovery for coronaviruses.
Collapse
|
12
|
Kulkarni A, Mochnáčová E, Majerova P, Čurlík J, Bhide K, Mertinková P, Bhide M. Single Domain Antibodies Targeting Receptor Binding Pockets of NadA Restrain Adhesion of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells. Front Mol Biosci 2020; 7:573281. [PMID: 33425985 PMCID: PMC7785856 DOI: 10.3389/fmolb.2020.573281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Neisseria adhesin A (NadA), one of the surface adhesins of Neisseria meningitides (NM), interacts with several cell types including human brain microvascular endothelial cells (hBMECs) and play important role in the pathogenesis. Receptor binding pockets of NadA are localized on the globular head domain (A33 to K69) and the first coiled-coil domain (L121 to K158). Here, the phage display was used to develop a variable heavy chain domain (VHH) that can block receptor binding sites of recombinant NadA (rec-NadA). A phage library displaying VHH was panned against synthetic peptides (NadA-gdA33−K69 or NadA-ccL121−K158), gene encoding VHH was amplified from bound phages and re-cloned in the expression vector, and the soluble VHHs containing disulfide bonds were overexpressed in the SHuffle E. coli. From the repertoire of 96 clones, two VHHs (VHHF3–binding NadA-gdA33−K69 and VHHG9–binding NadA-ccL121−K158) were finally selected as they abrogated the interaction between rec-NadA and the cell receptor. Preincubation of NM with VHHF3 and VHHG9 significantly reduced the adhesion of NM on hBMECs in situ and hindered the traversal of NM across the in-vitro BBB model. The work presents a phage display pipeline with a single-round of panning to select receptor blocking VHHs. It also demonstrates the production of soluble and functional VHHs, which blocked the interaction between NadA and its receptor, decreased adhesion of NM on hBMECs, and reduced translocation of NM across BBB in-vitro. The selected NadA blocking VHHs could be promising molecules for therapeutic translation.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Čurlík
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Sozhamannan S, Hofmann ER. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses 2020; 12:v12121393. [PMID: 33291831 PMCID: PMC7762055 DOI: 10.3390/v12121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Accurate pathogen detection and diagnosis is paramount in clinical success of treating patients. There are two general paradigms in pathogen detection: molecular and immuno-based, and phage-based detection is a third emerging paradigm due to its sensitivity and selectivity. Molecular detection methods look for genetic material specific for a given pathogen in a sample usually by polymerase chain reaction (PCR). Immuno-methods look at the pathogen components (antigens) by antibodies raised against that pathogen specific antigens. There are different variations and products based on these two paradigms with advantages and disadvantages. The third paradigm at least for bacterial pathogen detection entails bacteriophages specific for a given bacterium. Sensitivity and specificity are the two key parameters in any pathogen detection system. By their very nature, bacteriophages afford the best sensitivity for bacterial detection. Bacteria and bacteriophages form the predator-prey pair in the evolutionary arms race and has coevolved over time to acquire the exquisite specificity of the pair, in some instances at the strain level. This specificity has been exploited for diagnostic purposes of various pathogens of concern in clinical and other settings. Many recent reviews focus on phage-based detection and sensor technologies. In this review, we focus on a very special group of pathogens that are of concern in biodefense because of their potential misuse in bioterrorism and their extremely virulent nature and as such fall under the Centers for Disease and Prevention (CDC) Category A pathogen list. We describe the currently available phage methods that are based on the usual modalities of detection from culture, to molecular and immuno- and fluorescent methods. We further highlight the gaps and the needs for more modern technologies and sensors drawing from technologies existing for detection and surveillance of other pathogens of clinical relevance.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- National Security Science & Technology, Management Advisory Services, Logistics Management Institute, 7940 Jones Branch Drive, Tysons, VA 22102, USA;
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office (JPEO) for Chemical, Biological, Radiological and Nuclear Defense (CBRND) Joint Project Lead (JPL) CBRND Enabling Biotechnologies (EB), 110 Thomas Johnson Drive, Suite 250, Frederick, MD 21702, USA
| | - Edward R. Hofmann
- EXCET, Inc., 6225 Brandon Ave #360, Springfield, VA 22150, USA
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8908 Guard St, E3831, Edgewood, MD 21010, USA
- Correspondence:
| |
Collapse
|
14
|
Kumada Y, Hasegawa Y, Horiuchi JI. Efficient and robust isolation of rabbit scFv antibodies using antigen-coupled multilamellar vesicles. J Biosci Bioeng 2020; 131:299-304. [PMID: 33221176 DOI: 10.1016/j.jbiosc.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
We demonstrated an efficient screening method for rabbit scFv antibodies using antigen-coupled multi-lamellar vesicles (Ag-MLVs) as solid supports. Model phages displaying mouse anti-human IgG scFv at a probability of 10-4-10-5% were successfully isolated by Ag-MLVs after 3 or less rounds of biopanning, whereas they could not be isolated using conventional antigen-coated immunotubes. This screening method was applied to isolate rabbit antigen-specific scFvs from 4 different phage libraries. Biopanning procedures employing Ag-MLVs yielded positive phages in the 3rd round or earlier, and specific antigen-binding of scFvs was observed after the 1st round in two biopanning selections. The dissociation rate constants (koff) of isolated scFv clones tended to decrease with progressing biopanning rounds. The average dissociation constants (KD) of the isolated scFvs ranged between 1.7 and 87 nM, whereas the lowest KD of 12 pM was recorded for anti-CRP scFv. Comprehensive characterization of 355 different clones of the isolated rabbit scFvs presented a relatively low isoelectric point, and most of these were more thermo-stable than the conventional mouse scFvs, based on their instability and aliphatic indices. These results clearly indicate the advantages and potential of a combination of rabbit scFv-displaying phage library and biopanning using Ag-MLVs for antibody discovery. In addition, the results obtained in this study support the suitability of rabbit scFvs for several applications, including the development of diagnostic agents and affinity ligands for molecular diagnosis and bioseparation.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Yuya Hasegawa
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun-Ichi Horiuchi
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
15
|
Serwer P. Optimizing Anti-Viral Vaccine Responses: Input from a Non-Specialist. Antibiotics (Basel) 2020; 9:antibiotics9050255. [PMID: 32429032 PMCID: PMC7277631 DOI: 10.3390/antibiotics9050255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the research community has had a real-world look at reasons for improving vaccine responses to emerging RNA viruses. Here, a vaccine non-specialist suggests how this might be done. I propose two alternative options and compare the primary alternative option with current practice. The basis of comparison is feasibility in achieving what we need: a safe, mass-produced, emerging virus-targeted vaccine on 2–4 week notice. The primary option is the following. (1) Start with a platform based on live viruses that infect bacteria, but not humans (bacteriophages, or phages). (2) Isolate phages (to be called pathogen homologs) that resemble and provide antigenic context for membrane-covered, pathogenic RNA viruses; coronavirus-phage homologs will probably be found if the search is correctly done. (3) Upon isolating a viral pathogen, evolve its phage homolog to bind antibodies neutralizing for the viral pathogen. Vaccinate with the evolved phage homolog by generating a local, non-hazardous infection with the phage host and then curing the infection by propagating the phage in the artificially infecting bacterial host. I discuss how this alternative option has the potential to provide what is needed after appropriate platforms are built.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
16
|
|