1
|
Niu X, Xu Z, Di M, Huang D, Li X. Bioreactor strategies for tissue-engineered osteochondral constructs: Advantages, present situations and future trends. COMPOSITES PART B: ENGINEERING 2023; 259:110736. [DOI: 10.1016/j.compositesb.2023.110736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
2
|
Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage 2022; 30:1050-1061. [PMID: 35460872 DOI: 10.1016/j.joca.2022.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Joint-on-a-chip (JOC) models are powerful tools that aid in osteoarthritis (OA) research. These microfluidic devices apply emerging organ-on-a-chip technology to recapitulate a multifaceted joint tissue microenvironment. JOCs address the need for advanced, dynamic in vitro models that can mimic the in vivo tissue environment through joint-relevant biomechanical or fluidic integration, an aspect that existing in vitro OA models lack. There are existing review articles on OA models that focus on animal, tissue explant, and two-dimensional and three-dimensional (3D) culture systems, including microbioreactors and 3D printing technology, but there has been limited discussion of JOC models. The aim of this article is to review recent developments in human JOC technology and identify gaps for future advancements. Specifically, mechanical stimulation systems that mimic articular movement, multi-joint tissue cultures that enable crosstalk, and systems that aim to capture aspects of OA inflammation by incorporating immune cells are covered. The development of an advanced JOC model that captures the dynamic joint microenvironment will improve testing and translation of potential OA therapeutics.
Collapse
Affiliation(s)
- L Banh
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - K K Cheung
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - M W Y Chan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - E W K Young
- Institute of Biomedical Engineering, University of Toronto, Canada; Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - S Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
3
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
5
|
Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, Rahbarghazi R, Fathi Karkan S. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev Rep 2021; 17:1294-1311. [PMID: 33547591 DOI: 10.1007/s12015-021-10130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Seyedeh Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
De Luca A, Vitrano I, Costa V, Raimondi L, Carina V, Bellavia D, Conoscenti G, Di Falco R, Pavia FC, La Carrubba V, Brucato V, Giavaresi G. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair. J Biosci Bioeng 2019; 129:250-257. [PMID: 31506241 DOI: 10.1016/j.jbiosc.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-l-lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p < 0.0005), up-regulation of RUNX2, ALPL, SPP1 (p < 0.0005) and SOX9 (p < 0.005) gene expression, and more calcium nodule formation (p < 0.0005) were observed in d3D cultures in comparison to s3D ones over time. Dynamic 3D culture, mimicking the mechanical signals of bone environment, improved significantly osteogenic differentiation of hMSCs on PLLA/nHA scaffold, without the addition of growth factors, confirming this composite scaffold suitable for bone regeneration.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Ilenia Vitrano
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Gioacchino Conoscenti
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Rossella Di Falco
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Francesco Carfì Pavia
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Vincenzo La Carrubba
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Valerio Brucato
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| |
Collapse
|
7
|
Liu Y, Kuang B, Rothrauff BB, Tuan RS, Lin H. Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix. Biomaterials 2019; 218:119336. [PMID: 31310952 DOI: 10.1016/j.biomaterials.2019.119336] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/23/2023]
Abstract
Mesenchymal stem cells (MSCs) embedded in their secreted extracellular matrix (mECM) constitute an exogenous scaffold-free construct capable of generating different types of tissues. Whether MSC-mECM constructs can recapitulate endochondral ossification (ECO), a developmental process during in vivo skeletogenesis, remains unknown. In this study, MSC-mECM constructs are shown to result in robust bone formation both in vitro and in vivo through the process of endochondral ossification when sequentially exposed to chondrogenic and osteogenic cues. Of interest, a novel trypsin pre-treatment was introduced to change cell morphology, which allowed MSC-mECM constructs to undergo the N-cadherin-mediated developmental condensation process and subsequent chondrogenesis. Furthermore, bone formation by MSC-mECM constructs were significantly enhanced by the ECO protocol, as compared to conventional in vitro culture in osteogenic medium alone. This was designed to promote direct bone formation as seen in intramembranous ossification (IMO). The developmentally informed method reported in this study represents a robust and efficacious approach for stem-cell based bone generation, which is superior to the conventional osteogenic induction procedure.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Biao Kuang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; Xiangya Third Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA.
| |
Collapse
|
8
|
Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3957931. [PMID: 31178986 PMCID: PMC6501237 DOI: 10.1155/2019/3957931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing represents a key technology for rapid prototyping, allowing easy, rapid, and low-cost fabrication. In this work, 3D printing was applied for the in-house production of customized components of a mechanical stretching bioreactor with potential application for cardiac tissue engineering and mechanobiology studies. The culture chamber housing and the motor housing were developed as functional permanent parts, aimed at fixing the culture chamber position and at guaranteeing motor watertightness, respectively. Innovative sample holder prototypes were specifically designed and 3D-printed for holding thin and soft biological samples during cyclic stretch culture. The manufactured components were tested in-house and in a cell biology laboratory. Moreover, tensile tests and finite element analysis were performed to investigate the gripping performance of the sample holder prototypes. All the components showed suitable performances in terms of design, ease of use, and functionality. Based on 3D printing, the bioreactor optimization was completely performed in-house, from design to fabrication, enabling customization freedom, strict design-to-prototype timing, and cost and time effective testing, finally boosting the bioreactor development process.
Collapse
|
9
|
Pourchet L, Petiot E, Loubière C, Olmos E, Dos Santos M, Thépot A, Loïc BJ, Marquette CA. Large 3D bioprinted tissue: Heterogeneous perfusion and vascularization. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2018.e00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|