1
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Lu J, Zhao Q, Wang L, Li J, Wang H, Lv L, Yuan M, Chen Q, Zhang Z, Luo D, Sheng S, Yuan K, Liu G, Liu M, Shi Y, Guo Y, Dong Z. MBNL2 promotes aging-related cardiac fibrosis via inhibited SUMOylation of Krüppel-like factor4. iScience 2024; 27:110163. [PMID: 38974966 PMCID: PMC11226984 DOI: 10.1016/j.isci.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Aging-related cardiac fibrosis represents the principal pathological progression in cardiovascular aging. The Muscleblind-like splicing regulator 2 (MBNL2) has been unequivocally established as being associated with cardiovascular diseases. Nevertheless, its role in aging-related cardiac fibrosis remains unexplored. This investigation revealed an elevation of MBNL2 levels in the aged heart and senescent cardiac fibroblasts. Notably, the inhibition of MBNL2 demonstrated a capacity to mitigate H2O2-induced myofibroblast transformation and aging-related cardiac fibrosis. Further mechanistic exploration unveiled that aging heightened the expression of SENP1 and impeded the SUMO1 binding with KLF4, and SUMOylation of KLF4 effectively increased by the inhibition of MBNL2. Additionally, the inhibition of TGF-β1/SMAD3 signaling attenuated the impact of over-expression of MBNL2 in inducing senescence and cardiac fibrosis. MBNL2, by orchestrating SUMOylation of KLF4, upregulating the TGF-β1/SMAD3 signaling pathway, emerges as a significant promoter of aging-related cardiac fibrosis. This discovery identifies a novel regulatory target for managing aging-related cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Qi Zhao
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Lu Wang
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Jiahao Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Hongyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Lin Lv
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- Experimental Animal Center, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Meng Yuan
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Qiuyu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Zixin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Health Care Road, Nangang District, Harbin 150081, China
| | - Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Siqi Sheng
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Keying Yuan
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Guannan Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Mingyu Liu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Yuanqi Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
| | - Yuanyuan Guo
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- Department of Cardiology, Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin150001, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Youzheng Street, Nangang District, Harbin 150001, China
| |
Collapse
|
4
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
6
|
Di Giorgio A, Duca M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MEDCHEMCOMM 2019; 10:1242-1255. [PMID: 31534649 PMCID: PMC6748380 DOI: 10.1039/c9md00195f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
RNA is one of the most intriguing and promising biological targets for the discovery of innovative drugs in many pathologies and various biologically relevant RNAs that could serve as drug targets have already been identified. Among the most important ones, one can mention prokaryotic ribosomal RNA which is the target of several marketed antibiotics, viral RNAs or oncogenic microRNAs that are tightly involved in the development and progression of various cancers. Oligonucleotides are efficient and specific RNA targeting agents but suffer from poor pharmacodynamic and pharmacokinetic properties. For this reason, a number of synthetic small-molecule ligands have been identified and studied upon screening of chemical libraries or focused design of RNA binders. In this review, we report the most relevant examples of synthetic compounds bearing sufficient selectivity to envisage clinical studies and future therapeutic applications with a particular attention for the main strategies that can be undertaken toward the improvement of selectivity and biological activity.
Collapse
Affiliation(s)
- A Di Giorgio
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| | - M Duca
- Université Côte d'Azur , CNRS , Institute of Chemistry of Nice (ICN) , Nice , France .
| |
Collapse
|
7
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|