1
|
Kaneko T, Tanaka S, Sugiyama M, Kaise S, Inui H, Ushida K. The diversity of glycan chains in jellyfish mucin of three Cubozoan species: the contrast in molecular evolution rates of the peptide chain and Glycans. Glycobiology 2025; 35:cwae090. [PMID: 39499653 DOI: 10.1093/glycob/cwae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
The O-glycan composition of jellyfish (JF) mucin (qniumucin: Q-mucin) extracted from three Cubozoan species was studied after the optimization of the purification protocol. Application of a stepwise gradient of ionic strength to anion exchange chromatography (AEXC) was effective for isolating Q-mucin from coexisting impurities. In the three species, the amino acid sequence of the tandem repeat (TR) region in Q-mucin in all three Cubozoans seemed to remain the same as that in all Scyphozoans, although their glycan chains seemed to exhibit clear diversity. In particular, the amounts of acidic moieties on the glycan chains of Q-mucin from the Cubozoans markedly varied even in these genetically close species. In two of the three Cubozoan species, the fraction of disaccharides was large, showing a sharp contrast to that of the glycans of Q-mucin in Scyphozoans. This study also indicates that the simple sequence of TR commonly inherited in all Cubozoan and Scyphozoan JF species after the long term of evolution over 500 M years. According to this research, the glycans and the TR of mucin-type glycoproteins (MTGPs), forming a hierarchical structure, appear to complement each other in the evolutionary changes because the time required for their hereditary conversion is considerably different. The cooperation of these mechanisms is a strategy to achieve the contradictory functions of biosystems, namely species conservation and diversity acquisition.
Collapse
Affiliation(s)
- Takuma Kaneko
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shinra Tanaka
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Minami Sugiyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shiori Kaise
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Hiroshi Inui
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
- Atomic, Molecular & Optical Physics Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Zare A, Afshar A, Khoradmehr A, Baghban N, Mohebbi G, Barmak A, Daneshi A, Bargahi A, Nabipour I, Almasi-Turk S, Arandian A, Zibaii MI, Latifi H, Tamadon A. Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells. Mar Drugs 2023; 21:md21030168. [PMID: 36976217 PMCID: PMC10057638 DOI: 10.3390/md21030168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
- PerciaVista R&D Co., Shiraz 73, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Alireza Barmak
- Food Lab, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Adel Daneshi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Afshar Bargahi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Sahar Almasi-Turk
- Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
| | | | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
- Department of Physics, Shahid Beheshti University, Tehran 11, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| |
Collapse
|
3
|
Jellyfishing in Europe: Current Status, Knowledge Gaps, and Future Directions towards a Sustainable Practice. SUSTAINABILITY 2021. [DOI: 10.3390/su132212445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jellyfish are often described as a nuisance species, but as our understanding shifts to more ecosystem-based conceptions, they are also recognized as both important components of marine ecosystems and a resource for humans. Here, we describe global jellyfish fisheries and review production, fishing methods, and applications based on the existing literature. We then focus on future development of a European jellyfish fishery based on current and recent EU research initiatives. Jellyfish have been a staple food in East Asia for eons and now show a potential for non-food applications as well. The main fishing methods are mostly traditional, with set-nets, driftnets, hand-nets, and scoop-nets utilizing small crafts or beach-seines. All require a lot of manual labor, thus providing vital, albeit seasonal, occupation to weaker populations. Larger commercial vessels such as purse seines and trawlers are newly introduced métiers which may enable a larger catch per unit effort and total catch, but pose questions of selectivity, bycatch, vessel stability, and transshipment. Social concerns arising from the seasonality of jellyfish fisheries must be met in SE Asia, Latin America, and in any location where new fisheries are established. In the EU, we recognize at least 15 species showing potential for commercial harvesting, but as of 2021, a commercial fishery has yet to be developed; as in finfish fisheries, we advise caution and recognition of the role of jellyfish in marine ecosystems in doing so. Sustainable harvesting techniques and practices must be developed and implemented for a viable practice to emerge, and social and ecological needs must also be incorporated into the management plan. Once established, the catch, effort, and stock status must be monitored, regulated, and properly reported to FAO by countries seeking a viable jellyfish fishery. In the near future, novel applications for jellyfish will offer added value and new markets for this traditional resource.
Collapse
|
4
|
Anemonia sulcata and Its Symbiont Symbiodinium as a Source of Anti-Tumor and Anti-Oxoxidant Compounds for Colon Cancer Therapy: A Preliminary in Vitro Study. BIOLOGY 2021; 10:biology10020134. [PMID: 33567702 PMCID: PMC7915377 DOI: 10.3390/biology10020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Colorectal cancer is one of the most frequent types of cancer in the population. Recently, invertebrate marine animals have been investigated for the presence of natural products which can damage tumor cells, prevent their spread to other tissues or avoid cancer develop. We analyzed the anemone Anemonia sulcata with and without the presence of its microalgal symbiont (Symbiodinium) as a source of bioactive molecules for the colorectal cancer therapy and prevention. Colon cancer tumor cells were exposed to Anemone extracts observing a remarkable cell death and a great antioxidant capacity. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds against colorectal cancer and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action. Abstract Recently, invertebrate marine species have been investigated for the presence of natural products with antitumor activity. We analyzed the invertebrate Anemonia sulcata with (W) and without (W/O) the presence of its microalgal symbiont Symbiodinium as a source of bioactive compounds that may be applied in the therapy and/or prevention of colorectal cancer (CRC). Animals were mechanically homogenized and subjected to ethanolic extraction. The proximate composition and fatty acid profile were determined. In addition, an in vitro digestion was performed to study the potentially dialyzable fraction. The antioxidant and antitumor activity of the samples and the digestion products were analyzed in CRC cells in vitro. Our results show a high concentration of polyunsaturated fatty acid in the anemone and a great antioxidant capacity, which demonstrated the ability to prevent cell death and a high antitumor activity of the crude homogenates against CRC cells and multicellular tumor spheroids, especially W/O symbiont. These preliminary results support that Anemonia sulcata could be a source of bioactive compounds with antioxidant and antitumor potential against CRC and that the absence of its symbiont may enhance these properties. Further studies will be necessary to define the bioactive compounds of Anemonia sulcata and their mechanisms of action.
Collapse
|
5
|
Lyndby NH, Rädecker N, Bessette S, Søgaard Jensen LH, Escrig S, Trampe E, Kühl M, Meibom A. Amoebocytes facilitate efficient carbon and nitrogen assimilation in the Cassiopea-Symbiodiniaceae symbiosis. Proc Biol Sci 2020; 287:20202393. [PMID: 33323078 PMCID: PMC7779505 DOI: 10.1098/rspb.2020.2393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The upside-down jellyfish Cassiopea engages in symbiosis with photosynthetic microalgae that facilitate uptake and recycling of inorganic nutrients. By contrast to most other symbiotic cnidarians, algal endosymbionts in Cassiopea are not restricted to the gastroderm but are found in amoebocyte cells within the mesoglea. While symbiont-bearing amoebocytes are highly abundant, their role in nutrient uptake and cycling in Cassiopea remains unknown. By combining isotopic labelling experiments with correlated scanning electron microscopy, and Nano-scale secondary ion mass spectrometry (NanoSIMS) imaging, we quantified the anabolic assimilation of inorganic carbon and nitrogen at the subcellular level in juvenile Cassiopea medusae bell tissue. Amoebocytes were clustered near the sub-umbrella epidermis and facilitated efficient assimilation of inorganic nutrients. Photosynthetically fixed carbon was efficiently translocated between endosymbionts, amoebocytes and host epidermis at rates similar to or exceeding those observed in corals. The Cassiopea holobionts efficiently assimilated ammonium, while no nitrate assimilation was detected, possibly reflecting adaptation to highly dynamic environmental conditions of their natural habitat. The motile amoebocytes allow Cassiopea medusae to distribute their endosymbiont population to optimize access to light and nutrients, and transport nutrition between tissue areas. Amoebocytes thus play a vital role for the assimilation and translocation of nutrients in Cassiopea, providing an interesting new model for studies of metabolic interactions in photosymbiotic marine organisms.
Collapse
Affiliation(s)
- Niclas Heidelberg Lyndby
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Bessette
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Louise Helene Søgaard Jensen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Histomorphological comparison of testes in species of box jellyfish (Cnidaria; Cubozoa): does morphology differ with mode of reproduction and fertilization? ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-019-00427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Commun Biol 2020; 3:67. [PMID: 32054971 PMCID: PMC7018847 DOI: 10.1038/s42003-020-0777-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water. Cheryl L Ames, Anna Klompen et al. describe cassiosomes, stinging cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. They show that these motile cell masses consist of an outer epithelial layer largely composed of nematocytes surrounding centralized clusters of endosymbiotic dinoflagellates.
Collapse
|
8
|
Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, La S, Pirro S, Collins AG, Medina M, Ryan JF. Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa). Gigascience 2019; 8:giz069. [PMID: 31257419 PMCID: PMC6599738 DOI: 10.1093/gigascience/giz069] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Anthozoa, Endocnidozoa, and Medusozoa are the 3 major clades of Cnidaria. Medusozoa is further divided into 4 clades, Hydrozoa, Staurozoa, Cubozoa, and Scyphozoa-the latter 3 lineages make up the clade Acraspeda. Acraspeda encompasses extraordinary diversity in terms of life history, numerous nuisance species, taxa with complex eyes rivaling other animals, and some of the most venomous organisms on the planet. Genomes have recently become available within Scyphozoa and Cubozoa, but there are currently no published genomes within Staurozoa and Cubozoa. FINDINGS Here we present 3 new draft genomes of Calvadosia cruxmelitensis (Staurozoa), Alatina alata (Cubozoa), and Cassiopea xamachana (Scyphozoa) for which we provide a preliminary orthology analysis that includes an inventory of their respective venom-related genes. Additionally, we identify synteny between POU and Hox genes that had previously been reported in a hydrozoan, suggesting this linkage is highly conserved, possibly dating back to at least the last common ancestor of Medusozoa, yet likely independent of vertebrate POU-Hox linkages. CONCLUSIONS These draft genomes provide a valuable resource for studying the evolutionary history and biology of these extraordinary animals, and for identifying genomic features underlying venom, vision, and life history traits in Acraspeda.
Collapse
Affiliation(s)
- Aki Ohdera
- Department of Biology, Pennsylvania State University, 326 Mueller, University Park, PA, 16801, USA
| | - Cheryl L Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
| | - Ehsan Kayal
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - Marta Chiodin
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Ben Busby
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
| | - Sean La
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Barnaby, British Columbia, BC, V5A 1S6, Canada
| | - Stacy Pirro
- Iridian Genomes, Inc., 6213 Swords Way, Bethesda, MD, 20817, USA
| | - Allen G Collins
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- National Systematics Laboratory of NOAA's Fisheries Service, 1315 East-West Highway, Silver Spring, MD, 20910, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 326 Mueller, University Park, PA, 16801, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
Nielsen SKD, Koch TL, Hauser F, Garm A, Grimmelikhuijzen CJP. De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics 2019; 20:175. [PMID: 30836949 PMCID: PMC6402141 DOI: 10.1186/s12864-019-5514-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora. RESULTS Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides. CONCLUSIONS By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.
Collapse
Affiliation(s)
- Sofie K. D. Nielsen
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Garm
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|