1
|
Ip YCA, Chang JJM, Tun KPP, Meier R, Huang D. Multispecies environmental DNA metabarcoding sheds light on annual coral spawning events. Mol Ecol 2023; 32:6474-6488. [PMID: 35852023 DOI: 10.1111/mec.16621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Synchronous multispecific coral spawning generally occurs annually and forms an integral part of the coral life cycle. Apart from spawning times and species participation, however, much else remains unknown. Here, we applied environmental DNA (eDNA) metabarcoding to study two tropical reef sites of contrasting coral cover before, during and after coral spawning. Using coral-ITS2 and vertebrate-12S markers, we evaluated eDNA as an alternative monitoring tool by assessing its capabilities in detecting spawning species and tracking relative abundances of coral and fish eDNA. Over 3 years, elevated eDNA coral signals during the event (proportional read increase of up to five-fold) were observed, detecting a total of 38 coral and 133 fish species with all but one of the coral species visually observed to be spawning. This is also the first demonstration that eDNA metabarcoding can be used to infer the diurnal partitioning of night- and day-time spawning, spawning in coral species overlooked by visual surveys, and the associated changes in fish trophic structures as an indicator of spawning events. Our study paves the way for applied quantitative eDNA metabarcoding approaches to better study ephemeral and important biological events.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| |
Collapse
|
2
|
Orejas C, Antón-Sempere S, Terrón-Sigler A, Grau A. Reproductive characteristics and gametogenic cycle of the scleractinian coral Dendrophyllia ramea. PeerJ 2023; 11:e16079. [PMID: 37790618 PMCID: PMC10544315 DOI: 10.7717/peerj.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
The present study marks a pioneering investigation into the reproductive cycle of the scleractinian coral Dendrophyllia ramea. This is one of the first reproduction studies conducted in the Mediterranean Sea for a colonial azooxanthellate coral. Coral samples were collected in 2017 (May and October) and 2018 (February and July) in the Alborán Sea (SW Mediterranean). This location was selected due to its rarity as one of the few sites where this species thrives at depths shallower than 40 m. These samples were used to study the sexual patterns, fertilization mechanisms and gametogenic cycles by means of histological techniques. To broaden the scope, Sea Surface Temperature (SST) and Chlorophyll-a (Chl-a) data from open access databases have been considered to explore the potential influence of these environmental factors as triggers for gamete development and spawning time. The findings cast D. ramea as a gonochoric species, since no hermaphroditic specimens were observed among the analysed samples. Additionally, the lack of larvae and embryos in any of the analysed polyps, suggest that this species is fertilised externally. Two oocyte cohorts have been detected simultaneously, hinting at a yearly reproductive cycle, characterised by a prolonged oocyte maturation and seasonal spawning period taking place between August and October. Nevertheless, D. ramea display a low fecundity compared to other scleractinians inhabiting deep waters. Lastly, the early stages of gametogenesis seem to be coupled with the highest Chl-a values (i.e., March and December), whereas spawning takes place throughout the warmest period of the year (August to October).
Collapse
Affiliation(s)
- Covadonga Orejas
- Centro Oceanográfico de Gijón, Spanish Institute of Oceanography (IEO-CSIC), Gijón, Asturias, Spain
| | - Silvia Antón-Sempere
- Centro Oceanográfico de Baleares, Spanish Institute of Oceanography (IEO-CSIC), Palma, Baleares, Spain
- Laboratorio de Investigaciones Marinas y Acuicultura (LIMIA, IRFAP), Gobierno de las Islas Baleares, Puerto de Andratx, Baleares, Spain
| | | | - Amalia Grau
- Laboratorio de Investigaciones Marinas y Acuicultura (LIMIA, IRFAP), Gobierno de las Islas Baleares, Puerto de Andratx, Baleares, Spain
| |
Collapse
|
3
|
García-Rodríguez J, Cunha AF, Morales-Guerrero A, González-Chaves A, Camacho A, Miranda LS, Serrano FC, Jaimes-Becerra A, Marques AC. Reproductive and environmental traits explain the variation in egg size among Medusozoa (Cnidaria). Proc Biol Sci 2023; 290:20230543. [PMID: 37528708 PMCID: PMC10394409 DOI: 10.1098/rspb.2023.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Medusozoa (Cnidaria) are characterized by diverse life cycles, with different semaphoronts (medusa, medusoid, fixed gonophore, polyp) representing the sexual phase and carrying the gametes. Although egg size is often considered a proxy to understand reproductive and developmental traits of medusozoans, understanding of the processes influencing egg size variation in the group under an evolutionary context is still limited. We carried out a comprehensive review of the variation of egg size in Medusozoa to test whether this variation is related to biological/sexual or environmental traits. Egg size presents a strong phylogenetic signal (λ = 0.79, K = 0.67), explaining why closely related species with different reproductive strategies and different individual sizes have similar egg sizes. However, variation in egg size is influenced by the number of eggs, depth and temperature, with larger eggs frequently present in species with few eggs (1-15), in deep-sea species and in cold-water species. Conversely, the production of small eggs among cold-water species of Staurozoa might be associated with the development of a small benthic larvae in this group. Our study reinforces that egg sizes respond to reproductive and environmental traits, although egg size is highly conserved within medusa classes.
Collapse
Affiliation(s)
- Jimena García-Rodríguez
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Amanda Ferreira Cunha
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Departamento de Biologia Animal, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, 36570-900 Viçosa, Brazil
| | - Adriana Morales-Guerrero
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian González-Chaves
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Lucília Souza Miranda
- Department of Zoology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Filipe C. Serrano
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian Jaimes-Becerra
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Antonio Carlos Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| |
Collapse
|
4
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
6
|
de Palmas S, Soto D, Ho MJ, Denis V, Chen CA. Strong horizontal and vertical connectivity in the coral Pocillopora verrucosa from Ludao, Taiwan, a small oceanic island. PLoS One 2021; 16:e0258181. [PMID: 34634065 PMCID: PMC8504772 DOI: 10.1371/journal.pone.0258181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Mesophotic habitats could be sheltered from natural and anthropogenic disturbances and act as reproductive refuges, providing propagules to replenish shallower populations. Molecular markers can be used as proxies evaluating the connectivity and inferring population structure and larval dispersal. This study characterizes population structure as well as horizontal and vertical genetic connectivity of the broadcasting coral Pocillopora verrucosa from Ludao, a small oceanic island off the eastern coast of Taiwan. We genotyped 75 P. verrucosa specimens from three sites (Gongguan, Dabaisha, and Guiwan) at three depth ranges (Shallow: 7-15 m, Mid-depth: 23-30 m, and Deep: 38-45 m), spanning shallow to upper mesophotic coral reefs, with eight microsatellite markers. F-statistics showed a moderate differentiation (FST = 0.106, p<0.05) between two adjacent locations (Dabaisha 23-30 and Dabaisha 38-45 m), but no differentiation elsewhere, suggesting high levels of connectivity among sites and depths. STRUCTURE analysis showed no genetic clustering among sites or depths, indicating that all Pocillopora individuals could be drawn from a single panmictic population. Simulations of recent migration assigned 30 individuals (40%) to a different location from where they were collected. Among them, 1/3 were assigned to deeper locations, 1/3 to shallower populations and 1/3 were assigned to the right depth but a different site. These results suggest high levels of vertical and horizontal connectivity, which could enhance the recovery of P. verrucosa following disturbances around Ludao, a feature that agrees with demographic studies portraying this species as an opportunistic scleractinian.
Collapse
Affiliation(s)
- Stéphane de Palmas
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Derek Soto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Jay Ho
- Green Island Marine Research Station, Marine Science Thematic Centre, Biodiversity Research Center, Academia Sinica, Green Island, Taitung, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Sciences, Tunghai University, Taichung, Taiwan
| |
Collapse
|
7
|
Pendleton A, Hartill E, Waller R. Notes on reproduction in the deep-sea cup coral Balanophyllia malouinensis (Squires 1961) from the Southern Ocean. Polar Biol 2021. [DOI: 10.1007/s00300-021-02854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
9
|
Beyond the “Deep Reef Refuge” Hypothesis: A Conceptual Framework to Characterize Persistence at Depth. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_45] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|