(+)4-Cholesten-3-one promotes differentiation of neural stem cells into dopaminergic neurons through TET1 and FoxA2.
Neurosci Lett 2020;
735:135239. [PMID:
32650052 DOI:
10.1016/j.neulet.2020.135239]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023]
Abstract
In this paper, we report the results of treating cells with an effective small molecule, (+)4-cholesten-3-one (PubChem CID: 91477), which can promote neural stem cell(NSC) differentiation into dopaminergic neurons. This study used rat neural stem cells stimulated with two different concentrations (7.8 μM and 78 μM) of (+)4-cholesten-3-one. Cell phenotypic analysis showed that (+)4-cholesten-3-one induced NSC differentiation into dopaminergic neurons, and the level of tyrosine hydroxylase(TH), which is specific for dopaminergic cells, was significantly increased compared with that of the drug-free control group. Furthermore, in this study, we found that this effect may be related to the transcription factor fork-head box a2 (FoxA2) and ten-eleven translocation 1 (TET1). The expression of TET1 and FoxA2 was upregulated after treatment with (+)4-cholesten-3-one. To verify the relationship between (+)4-cholesten-3-one and these genes, we found that the binding rate of TET1 and FoxA2 increased after the application of (+)4-cholesten-3-one, as confirmed by a coimmunoprecipitation (Co-IP) assay. With a small interfering RNA (siRNA) experiment, we found that only when Tet1 and Foxa2 were not silenced was the mRNA level of Th increased after (+)4-cholesten-3-one treatment. Taken together, these data show that (+)4-cholesten-3-one can promote the differentiation of NSCs into dopaminergic neurons by upregulating the expression of TET1 and FoxA2 and by increasing their binding. Thus, (+)4-cholesten-3-one may help address the application of neural stem cell replacement therapy in neurodegenerative diseases.
Collapse