1
|
Brázda V, Porubiaková O, Cantara A, Bohálová N, Coufal J, Bartas M, Fojta M, Mergny JL. G-quadruplexes in H1N1 influenza genomes. BMC Genomics 2021; 22:77. [PMID: 33485319 PMCID: PMC7823172 DOI: 10.1186/s12864-021-07377-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Influenza viruses are dangerous pathogens. Seventy-Seven genomes of recently emerged genotype 4 reassortant Eurasian avian-like H1N1 virus (G4-EA-H1N1) are currently available. We investigated the presence and variation of potential G-quadruplex forming sequences (PQS), which can serve as targets for antiviral treatment. RESULTS PQS were identified in all 77 genomes. The total number of PQS in G4-EA-H1N1 genomes was 571. Interestingly, the number of PQS per genome in individual close relative viruses varied from 4 to 12. PQS were not randomly distributed in the 8 segments of the G4-EA-H1N1 genome, the highest frequency of PQS being found in the NP segment (1.39 per 1000 nt), which is considered a potential target for antiviral therapy. In contrast, no PQS was found in the NS segment. Analyses of variability pointed the importance of some PQS; even if genome variation of influenza virus is extreme, the PQS with the highest G4Hunter score is the most conserved in all tested genomes. G-quadruplex formation in vitro was experimentally confirmed using spectroscopic methods. CONCLUSIONS The results presented here hint several G-quadruplex-forming sequences in G4-EA-H1N1 genomes, that could provide good therapeutic targets.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Otília Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Alessio Cantara
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jan Coufal
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.
| |
Collapse
|