1
|
Abdelhafez AA, Eid KE, El-Abeid SE, Abbas MHH, Ahmed N, Mansour RRME, Zou G, Iqbal J, Fahad S, Elkelish A, Alamri S, Siddiqui MH, Mohamed I. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris. CHEMOSPHERE 2021; 271:129321. [PMID: 33434829 DOI: 10.1016/j.chemosphere.2020.129321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Sclerotium rolfsii is a soil-borne fungus that causes big losses in productivity of various plant species including Phaseolus vulgaris L. The objectives of this study were to (1) evaluate the impacts of Sclerotium rolfsii on growth and production of common bean plants, (2) determine the effects of Sclerotium rolfsii on nutritive contents of beans, and (3) test the efficacy of bio-inoculants on suppressing plant infection with Sclerotium rolfsii. To fulfill these objectives, we used a coupled pot and field experimental approaches during two growing seasons. Common beans were inoculated with either arbuscular mycorrhizal fungi (Claroideoglomus etunicatum), Saccharomyces cerevisiae, or Trichoderma viride solely or in different combinations. Non-inoculated plants and fungicide treated ones were considered as reference treatments. Throughout these experiments, minimal amounts of rock phosphate were added during soil preparation for bio-inoculated treatments, while the non-inoculated reference treatments received a full dose of P as calcium superphosphate. Results revealed that all tested bioinoculants significantly raised the activities of plant defense enzymes i.e. chitinase, peroxidase and polyphenoloxidase as compared to non-inoculated control. Likewise, pre-, post- and plant survival percentages significantly increased due to these bio-inoculations. Increased survival percentages were attributed to the concurrent increases in uptake of N, P and Zn nutrients by plants treated with bioinoculants. In this concern, plant nutrients uptake was higher in combined than single bio-inoculant treatments. Moreover, the uptake values of plant nutrients owing to the combined bio-inoculants were higher than the corresponding ones achieved due to fungicide treatment. In conclusion, application of the tested bio-inoculants, especially the combined ones can be considered an eco-friendly approach that not only enhances plants resistance against infection with Sclerotium rolfsii but also improves plant nutritive status.
Collapse
Affiliation(s)
- Ahmed A Abdelhafez
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China; New Valley University, Faculty of Agriculture, Soils and Water Department, Egypt; National Committee of Soil Science, Academy of Scientific Research and Technology, Egypt
| | - Khaled E Eid
- Plant Pathology Department, Faculty of Agriculture, Benha University Egypt
| | - Sozan E El-Abeid
- Plant Pathology Research Institute, Agriculture Research Centre (ARC), Giza, Egypt
| | - Mohamed H H Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Nevin Ahmed
- Plant Protection Department, Faculty of Agriculture, Benha University, Egypt
| | | | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China
| | - Javed Iqbal
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suze Canal University, Ismailia, Egypt
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Ibrahim Mohamed
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt.
| |
Collapse
|
2
|
Mohamed I, Eid KE, Abbas MHH, Salem AA, Ahmed N, Ali M, Shah GM, Fang C. Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:539-548. [PMID: 30641315 DOI: 10.1016/j.ecoenv.2018.12.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Extensive use of fertilizers and pesticides led to dangerous ecological effects and therefore the biological approaches have been widely recommended to prevent further deterioration for the environment. The current study was conducted to explore the potentiality of using single or combined inoculations by mycorrhizae, Bacillus subtilis and Pseudomonas fluorescence for controlling the infection of common bean plants with Sclerotium rolfsii on one hand and as bio-fertilizers for improving plants nutritional status on the other hand. The soil of study was mildly infected with S. rolfsii and contained high total-P content. Thus, minimal P inputs were added to the inoculated soil in the form of rock phosphate. Activities of plant defense enzymes i.e. chitinase, peroxidase and polyphenol oxidase were determined under the greenhouse conditions and the results obtained herein indicated that activities of such enzymes increased significantly owing to bio-agent inoculations. In this concern, combined treatments resulted in further significant increases over the single ones. A field study was then conducted for two successive years and the results reveal that single inoculations increased straw and green pod yields as well as the uptake of P and Fe by plants as compared with the non-inoculated treatment. Combined inoculants recorded further significant increases in these parameters even when compared with the fungicide treated plants. Generally, straw and pod yields obtained from the second growing season were significantly higher than those attained in the first growing one. Our study confirms the success of the used bio-treatments in minimizing soil pollution through fertilizer and/or pesticide inputs.
Collapse
Affiliation(s)
- Ibrahim Mohamed
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China; Soil and Water Sciences Department, Faculty of Agriculture, Benha University, Egypt; China Program of International Plant Nutrition Institute, Wuhan 430074, China.
| | - Khaled E Eid
- Plant Pathology Department, Faculty of Agriculture, Benha University, Egypt
| | - Mohamed H H Abbas
- Soil and Water Sciences Department, Faculty of Agriculture, Benha University, Egypt
| | - Ahmed A Salem
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Egypt
| | - Nevin Ahmed
- Benha University, Benha, Al-Qalyubia Governorate, Egypt
| | - Maha Ali
- Soil and Water Sciences Department, Faculty of Agriculture, Benha University, Egypt
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-campus, Vehari 61100, Pakistan
| | - Chen Fang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 430074, China; China Program of International Plant Nutrition Institute, Wuhan 430074, China.
| |
Collapse
|