1
|
Purkait C, Chand S, Biswas A. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine. Phys Rev E 2024; 109:044128. [PMID: 38755864 DOI: 10.1103/physreve.109.044128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024]
Abstract
We study quantum Otto thermal machines with a two-spin working system coupled by anisotropic interaction. Depending on the choice of different parameters, the quantum Otto cycle can function as different thermal machines, including a heat engine, refrigerator, accelerator, and heater. We aim to investigate how the anisotropy plays a fundamental role in the performance of the quantum Otto engine (QOE) operating in different timescales. We find that while the engine's efficiency increases with the increase in anisotropy for the quasistatic operation, quantum internal friction and incomplete thermalization degrade the performance in a finite-time cycle. Further, we study the quantum heat engine (QHE) with one of the spins (local spin) as the working system. We show that the efficiency of such an engine can surpass the standard quantum Otto limit, along with maximum power, thanks to the anisotropy. This can be attributed to quantum interference effects. We demonstrate that the enhanced performance of a local-spin QHE originates from the same interference effects, as in a measurement-based QOE for their finite-time operation.
Collapse
Affiliation(s)
- Chayan Purkait
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Chand
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Song WL, Liu HB, Zhou B, Yang WL, An JH. Remote Charging and Degradation Suppression for the Quantum Battery. PHYSICAL REVIEW LETTERS 2024; 132:090401. [PMID: 38489615 DOI: 10.1103/physrevlett.132.090401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
The quantum battery (QB) makes use of quantum effects to store and supply energy, which may outperform its classical counterpart. However, there are two challenges in this field. One is that the environment-induced decoherence causes the energy loss and aging of the QB, the other is that the decreasing of the charger-QB coupling strength with increasing their distance makes the charging of the QB become inefficient. Here, we propose a QB scheme to realize a remote charging via coupling the QB and the charger to a rectangular hollow metal waveguide. It is found that an ideal charging is realized as long as two bound states are formed in the energy spectrum of the total system consisting of the QB, the charger, and the electromagnetic environment in the waveguide. Using the constructive role of the decoherence, our QB is immune to the aging. Additionally, without resorting to the direct charger-QB interaction, our scheme works in a way of long-range and wireless-like charging. Effectively overcoming the two challenges, our result supplies an insightful guideline to the practical realization of the QB by reservoir engineering.
Collapse
Affiliation(s)
- Wan-Lu Song
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Hai-Bin Liu
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Bin Zhou
- Department of Physics, Hubei University, Wuhan 430062, China
| | - Wan-Li Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jun-Hong An
- Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics, and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Śmierzchalski T, Mzaouali Z, Deffner S, Gardas B. Efficiency optimization in quantum computing: balancing thermodynamics and computational performance. Sci Rep 2024; 14:4555. [PMID: 38402296 PMCID: PMC10894240 DOI: 10.1038/s41598-024-55314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024] Open
Abstract
We investigate the computational efficiency and thermodynamic cost of the D-Wave quantum annealer under reverse-annealing with and without pausing. Our demonstration on the D-Wave 2000Q annealer shows that the combination of reverse-annealing and pausing leads to improved computational efficiency while minimizing the thermodynamic cost compared to reverse-annealing alone. Moreover, we find that the magnetic field has a positive impact on the performance of the quantum annealer during reverse-annealing but becomes detrimental when pausing is involved. Our results, which are reproducible, provide strategies for optimizing the performance and energy consumption of quantum annealing systems employing reverse-annealing protocols.
Collapse
Affiliation(s)
- Tomasz Śmierzchalski
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland
| | - Zakaria Mzaouali
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland.
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
- National Quantum Laboratory, College Park, MD, 20740, USA
| | - Bartłomiej Gardas
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland
| |
Collapse
|
4
|
Leitch H, Hammam K, De Chiara G. Thermodynamics of hybrid quantum rotor devices. Phys Rev E 2024; 109:024108. [PMID: 38491686 DOI: 10.1103/physreve.109.024108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor and coupled dissipatively to two equilibrium reservoirs at different temperatures. By modeling the dynamics and the resulting steady state of the system using a collision model, we identify the functioning of the device as a thermal engine, a refrigerator, or an accelerator. In addition, we also look into the device's capacity to operate as a heat rectifier and optimize both the rectification coefficient and the heat flow simultaneously. Drawing an analogy to heat rectification and since we are interested in the conversion of energy into the rotor's kinetic energy, we introduce the concept of angular momentum rectification, which may be employed to control work extraction through an external load.
Collapse
Affiliation(s)
- Heather Leitch
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Kenza Hammam
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Gabriele De Chiara
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
5
|
Mohammadi A, Shafiee A. Quantum non-Markovianity, quantum coherence and extractable work in a general quantum process. Phys Chem Chem Phys 2024; 26:3990-3999. [PMID: 38224013 DOI: 10.1039/d3cp04528e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system. Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energies. Using the latter, we investigate the evolution of extractable work when an open quantum system undergoes a general quantum process described by a completely-positive and trace-preserving dynamical map. We derive a fundamental equation of thermodynamics for such processes as a relation between the distinct sorts of energy change in such a way that the first and the second law of thermodynamics are combined. We then identify the contributions from the reversible and irreversible processes in this equation and demonstrate that they are respectively responsible for the evolution of heat and extractable work of the open quantum system. Furthermore, we show how this correspondence between irreversibility and extractable work has the potential to provide a clear explanation of how the quantum properties of a system affect its extractable work evolution. Specifically, we establish this by directly connecting the change in extractable work with the change in standard quantifiers of quantum non-Markovianity and quantum coherence during a general quantum process. We illustrate these results with two examples.
Collapse
Affiliation(s)
- Amin Mohammadi
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Afshin Shafiee
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
6
|
Reggab K. Energy spectrum of selected diatomic molecules (H 2, CO, I 2, NO) by the resolution of Schrodinger equation for combined potentials via NUFA method. J Mol Model 2024; 30:53. [PMID: 38286948 DOI: 10.1007/s00894-024-05845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
CONTEXT To determine the properties of diatomic molecules, studying their chemical bond energy spectrum is essential since it enables the assessment of their characteristics. This research presents diatomic molecules spectroscopic characteristics and rovibrational energy (H2, CO, I2, NO). The Schrodinger equation is solved to determine these energies, considering the presence of a combination of two distinct potentials. the inverse quadratic Yukawa potential in combination with the screened modified Kratzer. METHOD This work used the Greene-Aldrich assumption and the Nikiforov-Uvarov functional analysis approach as analytical tools to solve the Schrodinger equation and determine the energy spectrum of diatomic molecules (H2, CO, I2, NO). The use of Mathematica software allows for the calculation of the eigenvalues of energy of the previously mentioned diatomic molecules (H2, CO, I2, NO) based on their rovibrational energies in the final equation. By comparing the eigenvalue findings with previous research, it was seen that the technique yielded the expected and desirable outcomes.
Collapse
Affiliation(s)
- Khalid Reggab
- Department of Physics, University Ziane Achour, Djelfa, Algeria.
- Laboratory of Materials Science and Informatics (MSIL), Djelfa, Algeria.
| |
Collapse
|
7
|
Bácsi Á, Dóra B. Kibble-Zurek scaling due to environment temperature quench in the transverse field Ising model. Sci Rep 2023; 13:4034. [PMID: 36899093 PMCID: PMC10006093 DOI: 10.1038/s41598-023-30840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The Kibble-Zurek mechanism describes defect production due to non-adiabatic passage through a critical point. Here we study its variant from ramping the environment temperature to a critical point. We find that the defect density scales as [Formula: see text] or [Formula: see text] for thermal or quantum critical points, respectively, in terms of the usual critical exponents and [Formula: see text] the speed of the drive. Both scalings describe reduced defect density compared to conventional Kibble-Zurek mechanism, which stems from the enhanced relaxation due to bath-system interaction. Ramping to the quantum critical point is investigated by studying the Lindblad equation for the transverse field Ising chain in the presence of thermalizing bath, with couplings to environment obeying detailed balance, confirming the predicted scaling. The von-Neumann or the system-bath entanglement entropy follows the same scaling. Our results are generalized to a large class of dissipative systems with power-law energy dependent bath spectral densities as well.
Collapse
Affiliation(s)
- Ádám Bácsi
- MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary. .,Department of Mathematics and Computational Sciences, Széchenyi István University, Győr, 9026, Hungary. .,Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Balázs Dóra
- MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary.,Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary
| |
Collapse
|
8
|
Korzekwa K, Lostaglio M. Optimizing Thermalization. PHYSICAL REVIEW LETTERS 2022; 129:040602. [PMID: 35939010 DOI: 10.1103/physrevlett.129.040602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
We present a rigorous approach, based on the concept of continuous thermomajorization, to algorithmically characterize the full set of energy occupations of a quantum system accessible from a given initial state through weak interactions with a heat bath. The algorithm can be deployed to solve complex optimization problems in out-of-equilibrium setups and it returns explicit elementary control sequences realizing optimal transformations. We illustrate this by finding optimal protocols in the context of cooling, work extraction, and catalysis. The same tools also allow one to quantitatively assess the role played by memory effects in the performance of thermodynamic protocols. We obtained exhaustive solutions on a laptop machine for systems with dimension d≤7, but with heuristic methods one could access much higher d.
Collapse
Affiliation(s)
- Kamil Korzekwa
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
| | - Matteo Lostaglio
- Korteweg-de Vries Institute for Mathematics and QuSoft, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, Netherlands
- QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| |
Collapse
|
9
|
Alicki R, Gelbwaser-Klimovsky D, Jenkins A. The Problem of Engines in Statistical Physics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1095. [PMID: 34441235 PMCID: PMC8391344 DOI: 10.3390/e23081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a theoretical blind spot. This has hampered the usefulness of statistical mechanics applied to active systems, including living matter. We argue that recent advances in the theory of open quantum systems, coupled with renewed interest in understanding how active forces result from positive feedback between different macroscopic degrees of freedom in the presence of dissipation, point to a more realistic description of autonomous engines. We propose a general conceptualization of an engine that helps clarify the distinction between its heat and work outputs. Based on this, we show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion. This modifies the usual Fokker-Planck and Langevin equations, offering a thermodynamically complete formulation of the irreversible dynamics of simple oscillating and rotating engines.
Collapse
Affiliation(s)
- Robert Alicki
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308 Gdańsk, Poland;
| | - David Gelbwaser-Klimovsky
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Alejandro Jenkins
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308 Gdańsk, Poland;
- Laboratorio de Física Teórica y Computacional, Escuela de Física, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
10
|
Dann R, Kosloff R, Salamon P. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1255. [PMID: 33287023 PMCID: PMC7712823 DOI: 10.3390/e22111255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/01/2023]
Abstract
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA;
| |
Collapse
|
11
|
Alicki R, Jenkins A. Quantum Theory of Triboelectricity. PHYSICAL REVIEW LETTERS 2020; 125:186101. [PMID: 33196235 DOI: 10.1103/physrevlett.125.186101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
We propose a microphysical theory of the triboelectric effect by which mechanical rubbing separates charges across the interface between two materials. Surface electrons are treated as an open system coupled to two baths, corresponding to the bulks. Extending Zel'dovich's theory of bosonic superradiance, we show that motion-induced population inversion can generate an electromotive force. We argue that this is consistent with the basic phenomenology of triboelectrification and triboluminescence as irreversible processes, and we suggest how to carry out more precise experimental tests.
Collapse
Affiliation(s)
- Robert Alicki
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308 Gdańsk, Poland
| | - Alejandro Jenkins
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308 Gdańsk, Poland
- Laboratorio de Física Teórica y Computacional, Escuela de Física, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- Instituto de Física Teórica UAM/CSIC, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Semenov A, Nitzan A. Transport and thermodynamics in quantum junctions: A scattering approach. J Chem Phys 2020; 152:244126. [PMID: 32610981 DOI: 10.1063/5.0010127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a scattering approach for the study of the transport and thermodynamics of quantum systems strongly coupled to their thermal environment(s). This formalism recovers the standard non-equilibrium Green's function expressions for quantum transport and reproduces recently obtained results for the quantum thermodynamics of slowly driven systems. Using this approach, new results have been obtained. First, we derived a general explicit expression for the non-equilibrium steady-state density matrix of a system composed of multiple infinite baths coupled through a general interaction. Then, we obtained a general expression for the dissipated power for the driven non-interacting resonant level to the first order in the driving speeds, where both the dot energy level and its couplings are changing, without invoking the wide-band approximation. In addition, we also showed that the symmetric splitting of the system bath interaction, employed for the case of a system coupled to one bath to determine the effective system Hamiltonian [A. Bruch et al., Phys. Rev. B 93, 115318 (2016)], is valid for the multiple bath case as well. Finally, we demonstrated an equivalence of our method to the Landauer-Buttiker formalism and its extension to slowly driven systems developed by Bruch, Lewenkopf, and von Oppen [Phys. Rev. Lett. 120, 107701 (2018)]. To demonstrate the use of this formalism, we analyze the operation of a device in which the dot is driven cyclically between two leads under strong coupling conditions. We also generalize the previously obtained expression for entropy production in such driven processes to the many-bath case.
Collapse
Affiliation(s)
- Alexander Semenov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Diazdelacruz J. Quantum Relative Entropy of Tagging and Thermodynamics. ENTROPY 2020; 22:e22020138. [PMID: 33285913 PMCID: PMC7516547 DOI: 10.3390/e22020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Thermodynamics establishes a relation between the work that can be obtained in a transformation of a physical system and its relative entropy with respect to the equilibrium state. It also describes how the bits of an informational reservoir can be traded for work using Heat Engines. Therefore, an indirect relation between the relative entropy and the informational bits is implied. From a different perspective, we define procedures to store information about the state of a physical system into a sequence of tagging qubits. Our labeling operations provide reversible ways of trading the relative entropy gained from the observation of a physical system for adequately initialized qubits, which are used to hold that information. After taking into account all the qubits involved, we reproduce the relations mentioned above between relative entropies of physical systems and the bits of information reservoirs. Some of them hold only under a restricted class of coding bases. The reason for it is that quantum states do not necessarily commute. However, we prove that it is always possible to find a basis (equivalent to the total angular momentum one) for which Thermodynamics and our labeling system yield the same relation.
Collapse
Affiliation(s)
- Jose Diazdelacruz
- Department of Applied Physics and Materials Engineering, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|