1
|
Liu N, Lai J, Lyu C, Qiang B, Wang H, Jin H, Zhang L, Liu Z. Chemical Space, Scaffolds, and Halogenated Compounds of CMNPD: A Comprehensive Chemoinformatic Analysis. J Chem Inf Model 2021; 61:3323-3336. [PMID: 34156848 DOI: 10.1021/acs.jcim.1c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The comprehensive marine natural products database (CMNPD) is a new free access and comprehensive database developed originally by Lyu's team of our research group, including more than 30 000 marine natural products (MNPs) reported from the 1960s. In this article, we aimed to present CMNPD's value in drug discovery and to present several characteristics of MNPs based on our new comprehensive data. We used chemoinformatic analysis methods to report the molecular properties, chemical space, and several scaffold assessments of CMNPD compared with several databases. Then, we reported the characteristics of MNPs from the aspect of halogens, comparing MNPs with terrestrial natural products (TNPs) and drugs. We found that CMNPD had a low proportion (2.91%) of scaffolds utilized by drugs, and high similarities between CMNPD and NPAtlas (a microbial natural products database), which are worth further investigation. The proportion of bromides in MNPs is outstandingly higher (11.0%) in contrast to other halogens. Furthermore, the results showed great differences in halogenated structures between MNPs and drugs, especially brominated substructures. Finally, we found that many marine species (2.52%) reported only halogenated compounds. It can be concluded from these results that CMNPD is a promising source for drug discovery and has many scientific issues relative to MNPs that need to be further investigated.
Collapse
Affiliation(s)
- Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Junyong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Chuanyu Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Bo Qiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Heyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| |
Collapse
|
2
|
Punitha T, Phang SM, Juan JC, Beardall J. Environmental Control of Vanadium Haloperoxidases and Halocarbon Emissions in Macroalgae. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:282-303. [PMID: 29691674 DOI: 10.1007/s10126-018-9820-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Vanadium-dependent haloperoxidases (V-HPO), able to catalyze the reaction of halide ions (Cl-, Br-, I-) with hydrogen peroxide, have a great influence on the production of halocarbons, which in turn are involved in atmospheric ozone destruction and global warming. The production of these haloperoxidases in macroalgae is influenced by changes in the surrounding environment. The first reported vanadium bromoperoxidase was discovered 40 years ago in the brown alga Ascophyllum nodosum. Since that discovery, more studies have been conducted on the structure and mechanism of the enzyme, mainly focused on three types of V-HPO, the chloro- and bromoperoxidases and, more recently, the iodoperoxidase. Since aspects of environmental regulation of haloperoxidases are less well known, the present paper will focus on reviewing the factors which influence the production of these enzymes in macroalgae, particularly their interactions with reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Thillai Punitha
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Graduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Level 3, IPS Building, Kuala Lumpur, Malaysia.
- School of Science, Monash University Malaysia Campus, Bandar Sunway, 46150, Subang Jaya, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
La Barre S, Potin P, Leblanc C, Delage L. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs 2010; 8:988-1010. [PMID: 20479964 PMCID: PMC2866472 DOI: 10.3390/md8040988] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/13/2010] [Accepted: 03/25/2010] [Indexed: 11/16/2022] Open
Abstract
Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.
Collapse
Affiliation(s)
- Stéphane La Barre
- Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails:
(P.P.);
(C.L.);
(L.D.)
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France
| | - Philippe Potin
- Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails:
(P.P.);
(C.L.);
(L.D.)
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France
| | - Catherine Leblanc
- Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails:
(P.P.);
(C.L.);
(L.D.)
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France
| | - Ludovic Delage
- Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails:
(P.P.);
(C.L.);
(L.D.)
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France
| |
Collapse
|