1
|
Derbalah A, El-Gendy SAA, Alsafy MAM, Elghoul M. Micro-morphology of the retina of the light-adapted African catfish (Clarias gariepinus). Microsc Res Tech 2023; 86:208-215. [PMID: 36285356 DOI: 10.1002/jemt.24252] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 01/21/2023]
Abstract
The current study aimed to investigate the ultrastructure of the retinal photoreceptors of the African catfish and to demonstrate their adaptation to nocturnal or diurnal visions or by the two ways. The eyes of eight adult catfish were collected during the daytime, and the retinae were separated and examined by light and transmission electron microscopy. The photoreceptors' layer appeared in contact with the retina's pigmented epithelium. Two photoreceptors were detected in cones and hidden rods. Cones predominate in light-adapted retinae. The outer segments of cones appeared between the retinal pigmented epithelium protrusions, which indicates the movement of melanosomes away from the photoreceptors as a retinomotor response of the catfish. The two types of retinal tapetum were in between cones. The first type, the cored granules, were large, spherical, and had black peripheral parts and central lucent parts, and contained some granules. The second type was Guanine crystallites of tapetum lucidum, which were small electron-lucent, and their shape varied from spherical to rectangular. Melanosomes vary in shape from spherical to elliptical. The Müller cells were darkly stained elongated cells that measured about 5.5-8.5 μm in length and 2.2-2.5 μm in width, and their microvilli appeared between the inner segments of the rods and cones. Müller cell processes were extended from the photoreceptor layer to the inner limiting membrane. Zonula occludentes appeared between the Müller cell processes and the internal segment of the rods and cones. African catfish have eyes which are adapted not only for nocturnal but also for daytime light.
Collapse
Affiliation(s)
- Amira Derbalah
- Histology and Cytology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir A A El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A M Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Elghoul
- Histology and Cytology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Nag TC, Chakraborti S, Das D. The eye of the tongue sole Cynoglossus bilineatus (Lacepède, 1802) (Teleostei: Pleuronectiformes). Tissue Cell 2021; 74:101710. [PMID: 34953346 DOI: 10.1016/j.tice.2021.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
We report the ocular features of the tongue sole, Cynoglossus bilineatus (Lacepède, 1802), a marine, bottom-dwelling flatfish. In this species, both eyes are located juxtaposed on the same side of the flat head. Histology revealed the sclera to be fibrous (collagenous) in nature. The choroid possesses the choriocapillaris, and adjacent to it, 3-4 rows of iridophores with stacks of cytoplasmic platelets. No choroidal gland is present. The retinal pigment epithelium (RPE) contains scanty melanin granules. Its vitread half is modified into a dense tapetum with lipid spheres (about 0.34 μm in diameter). In juveniles, the tapetal spheres arise by budding from the smooth endoplasmic reticulum of the RPE. There are blood vessels within the retina; the vitreal vessels penetrate the retina and ramify close to the level of the outer limiting membrane. The vessels are capillaries in nature. The photoreceptor layer contains abundant rods, and twin cones and single cones, being arranged into square mosaics. The optic disc is non-pleated and shows pan- cytokeratin immunopositivity, which is related to the bundled cytokeratin filaments detected in astrocytes by electron microscopy. The retinal tapetum and choroidal iridophores help the species to live in a muddy bottom having dim-light environment. The lack of a choroidal gland, hypoxic aquatic condition and presence of a dense retinal tapetum (that limits O2 transport to the photoreceptors) appear to have favored the proliferation of vitreal vessels within the retina in this species. The fibrous sclera has probably arisen to provide structural support to the eye in migration from the lateral to the dorsal aspect of the head during larval metamorphosis.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - S Chakraborti
- Department of Zoology, Bidhannagar College, Salt Lake 1, Kolkata, 700064, West Bengal, India
| | - D Das
- Department of Zoology, Taki Government College, Taki, North 24 Parganas, West Bengal, 743429, India
| |
Collapse
|
3
|
Palmer BA, Gur D, Weiner S, Addadi L, Oron D. The Organic Crystalline Materials of Vision: Structure-Function Considerations from the Nanometer to the Millimeter Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800006. [PMID: 29888511 DOI: 10.1002/adma.201800006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Vision mechanisms in animals, especially those living in water, are diverse. Many eyes have reflective elements that consist of multilayers of nanometer-sized crystalline plates, composed of organic molecules. The crystal multilayer assemblies owe their enhanced reflectivity to the high refractive indices of the crystals in preferred crystallographic directions. The high refractive indices are due to the molecular arrangements in their crystal structures. Herein, data regarding these difficult-to-characterize crystals are reviewed. This is followed by a discussion on the function of these crystalline assemblies, especially in visual systems whose anatomy has been well characterized under close to in vivo conditions. Three test cases are presented, and then the relations between the reflecting crystalline components and their functions, including the relations between molecular structure, crystal structure, and reflecting properties are discussed. Some of the underlying mechanisms are also discussed, and finally open questions in the field are identified.
Collapse
Affiliation(s)
- Benjamin A Palmer
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dvir Gur
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
4
|
Optically functional isoxanthopterin crystals in the mirrored eyes of decapod crustaceans. Proc Natl Acad Sci U S A 2018; 115:2299-2304. [PMID: 29463710 DOI: 10.1073/pnas.1722531115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eyes of some aquatic animals form images through reflective optics. Shrimp, lobsters, crayfish, and prawns possess reflecting superposition compound eyes, composed of thousands of square-faceted eye units (ommatidia). Mirrors in the upper part of the eye (the distal mirror) reflect light collected from many ommatidia onto the photosensitive elements of the retina, the rhabdoms. A second reflector, the tapetum, underlying the retina, back-scatters dispersed light onto the rhabdoms. Using microCT and cryo-SEM imaging accompanied by in situ micro-X-ray diffraction and micro-Raman spectroscopy, we investigated the hierarchical organization and materials properties of the reflective systems at high resolution and under close-to-physiological conditions. We show that the distal mirror consists of three or four layers of plate-like nanocrystals. The tapetum is a diffuse reflector composed of hollow nanoparticles constructed from concentric lamellae of crystals. Isoxanthopterin, a pteridine analog of guanine, forms both the reflectors in the distal mirror and in the tapetum. The crystal structure of isoxanthopterin was determined from crystal-structure prediction calculations and verified by comparison with experimental X-ray diffraction. The extended hydrogen-bonded layers of the molecules result in an extremely high calculated refractive index in the H-bonded plane, n = 1.96, which makes isoxanthopterin crystals an ideal reflecting material. The crystal structure of isoxanthopterin, together with a detailed knowledge of the reflector superstructures, provide a rationalization of the reflective optics of the crustacean eye.
Collapse
|
5
|
García M, Tomás S, Robles ML, Ramos A, Segovia Y. Morphology of the retina in deep-water fish Nezumia sclerorhynchus
(Valenciennes, 1838) (Gadiformes: Macrouridae). ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena García
- Department of Biotechnology; University of Alicante; Alicante Spain
| | - Sabina Tomás
- Department of Biotechnology; University of Alicante; Alicante Spain
| | | | - Alfonso Ramos
- Department of Marine Sciences and Applied Biology; University of Alicante; Alicante Spain
| | - Yolanda Segovia
- Department of Biotechnology; University of Alicante; Alicante Spain
| |
Collapse
|
6
|
Gerkema MP, Davies WIL, Foster RG, Menaker M, Hut RA. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 2013; 280:20130508. [PMID: 23825205 DOI: 10.1098/rspb.2013.0508] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In 1942, Walls described the concept of a 'nocturnal bottleneck' in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail.
Collapse
Affiliation(s)
- Menno P Gerkema
- Centre for Behaviour and Neuroscience, Department of Chronobiology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Veilleux CC, Lewis RJ. Effects of Habitat Light Intensity on Mammalian Eye Shape. Anat Rec (Hoboken) 2011; 294:905-14. [DOI: 10.1002/ar.21368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/14/2011] [Indexed: 11/11/2022]
|
8
|
Bearder SK, Nekaris KAI, Curtis DJ. A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatol (Basel) 2006; 77:50-71. [PMID: 16415577 DOI: 10.1159/000089695] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper examines the importance of vision in the lives of nocturnal primates in comparison to diurnal and cathemeral species. Vision is the major sense in all primates and there is evidence that the eyesight of nocturnal species is more acute and variable than has previously been recognized. Case studies of the behaviour of a galago and a loris in open woodland habitats in relation to ambient light show that Galago moholi males are more likely to travel between clumps of vegetation along the ground when the moon is up, and during periods of twilight, whereas they retreat to more continuous vegetation and travel less when the moon sets. This is interpreted as a strategy for avoiding predators that hunt on the ground when it is dark. The travel distances of Loris lydekkerianus are not affected by moonlight but this species reduces its choice of food items from more mobile prey to mainly ants when the moon sets, indicating the importance of light when searching for high-energy supplements to its staple diet. Evidence is presented for the first time to indicate key aspects of nocturnal vision that would benefit from further research. It is suggested that the light and dark facial markings of many species convey information about species and individual identity when animals approach each other at night. Differences in the colour of the reflective eye-shine, and behavioural responses displayed when exposed to white torchlight, point to different kinds of nocturnal vision that are suited to each niche, including the possibility of some degree of colour discrimination. The ability of even specialist nocturnal species to see well in broad daylight demonstrates an inherent flexibility that would enable movement into diurnal niches. The major differences in the sensitivity and perceptual anatomy of diurnal lemurs compared to diurnal anthropoids, and the emergence of cathemerality in lemurs, is interpreted as a reflection of evolution from different ancestral stocks in very different ecosystems, and not a recent shift towards diurnality due to human disturbance.
Collapse
Affiliation(s)
- S K Bearder
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK.
| | | | | |
Collapse
|
9
|
Abstract
The visual systems of cathemeral mammals are subject to selection pressures that are not encountered by strictly diurnal or nocturnal species. In particular, the cathemeral eye and retina must be able to function effectively across a broad range of ambient light intensities. This paper provides a review of the current state of knowledge regarding the visual anatomy of cathemeral primates, and presents an analysis of the influence of cathemerality on eye morphology in the genus Eulemur. Due to the mutual antagonism between most adaptations for increased visual acuity and sensitivity, cathemeral lemurs are expected to resemble other cathemeral mammals in having eye morphologies that are intermediate between those of diurnal and nocturnal close relatives. However, if lemurs only recently adopted cathemeral activity patterns, then cathemeral lemurids would be expected to demonstrate eye morphologies more comparable to those of nocturnal strepsirrhines. Both predictions were tested through a comparative study of relative cornea size in mammals. Intact eyes were collected from 147 specimens of 55 primate species, and relative corneal dimensions were compared to measurements taken from a large sample of non-primate mammals. These data reveal that the five extant species of the cathemeral genus Eulemur have relative cornea sizes intermediate between those of diurnal and nocturnal strepsirrhines. Moreover, all Eulemur species have relative cornea sizes that are comparable to those of cathemeral non-primate mammals and significantly smaller than those of nocturnal mammals. These results suggest that Eulemur species resemble other cathemeral mammals in having eyes that are adapted to function under variable environmental light levels. These results also suggest that cathemerality is a relatively ancient adaptation in Eulemur that was present in the last common ancestor of the genus (ca. 8-12 MYA).
Collapse
|
10
|
Miller ER, Gunnell GF, Martin RD. Deep Time and the Search for Anthropoid Origins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; Suppl 41:60-95. [PMID: 16369958 DOI: 10.1002/ajpa.20352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent fossil discoveries, phylogenetic analyses, revised reconstructions of continental drift, and accumulating molecular evidence have all yielded new information relating to anthropoid origins within the broader context of primate evolution. There is an emerging consensus among molecular studies that four superorders of eutherian mammals can be recognized: Afrotheria, Euarchontoglires (to which primates belong), Laurasiatheria, and Xenarthra. Overall, molecular phylogenies for mammals agree with some statistical analyses of the primate fossil record in indicating an early origin for primates around 85 Ma ago, and the divergence of haplorhines and strepsirrhines at ca. 77 Ma. Such an ancient date for the origin of haplorhines is some 17 Ma prior to the first known possible primate, and some 22 Ma before the earliest fossil evidence of undoubted euprimates. Because anthropoid fossils date back at least to the late Eocene and perhaps to the middle Eocene, and given indications of an early origin for primates, it is unlikely that ancestral anthropoids arose within any other currently known clade of fossil primates (adapiforms, omomyiforms, strepsirrhines, or tarsiiforms). Implications of new molecular, morphological, and biogeographic lines of evidence are explored with respect to the likely time and place of the origin of anthropoids. Four competing, testable hypotheses are reviewed in detail: 1) the Paratethyan hypothesis, 2) the continental Asian hypothesis, 3) the Indo-Madagascar hypothesis, and 4) the African hypothesis. A case is made that current evidence best supports a relatively ancient Gondwanan origin for primates, as well as a Gondwanan (African or Indo-Madagascan) origin for anthropoids at least as old as that of any other currently documented major primate clade. Available fossil evidence at present seems to be most compatible with the African hypothesis, but it is noteworthy that primates are included not in Afrotheria but in Euarchontoglires.
Collapse
Affiliation(s)
- Ellen R Miller
- Department of Anthropology, Wake Forest University, Winston-Salem, North Carolina 27109-7807, USA.
| | | | | |
Collapse
|
11
|
Takei S, Somiya H. Guanine-type retinal tapetum and ganglion cell topography in the retina of a carangid fish, Kaiwarinus equula. Proc Biol Sci 2002; 269:75-82. [PMID: 11788039 PMCID: PMC1690855 DOI: 10.1098/rspb.2001.1849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A guanine-type retinal tapetum was recorded in the eyes of a carangid fish Kaiwarinus equula (= Carangoides equula), spectrophotometric evidence of such being presented. The total amount of guanine in one eye was about 6.5 mg, the guanine density being ca. 1.3 mg cm(-2) over the retinal surface area. To examine the guanine distribution within the retina, the latter was divided into 21 regions. An area of high guanine density (more than 2.0 mg cm(-2)) was observed in the dorsal fundus of the retina, suggesting that the most sensitive vision was checked downward. Using whole-mount retinal preparations, the distribution of Nissl-stained cells within the retinal ganglion cell layer was examined. The greatest cell density area (area centralis) was observed only in the temporal retina. The visual acuity of the area centralis was 4.3 cycles deg(-1), suggesting that high resolution and binocular vision were directed frontally in this species. The eyes of a related carangid (Pseudocaranx dentex), lacking a tapetum, were also examined for comparison. The possible ecological advantage resulting from the tapetum is discussed in terms of visual threshold.
Collapse
Affiliation(s)
- Shiro Takei
- Faculty of Bioresources, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
| | | |
Collapse
|
12
|
Kay RF, Kirk EC. Osteological evidence for the evolution of activity pattern and visual acuity in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2000; 113:235-62. [PMID: 11002207 DOI: 10.1002/1096-8644(200010)113:2<235::aid-ajpa7>3.0.co;2-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Examination of orbit size and optic foramen size in living primates reveals two adaptive phenomena. First, as noted by many authors, orbit size is strongly correlated with activity pattern. Comparisons of large samples of extant primates consistently reveal that nocturnal species exhibit proportionately larger orbits than diurnal species. Furthermore, nocturnal haplorhines (Tarsius and Aotus) have considerably larger orbits than similar-sized nocturnal strepsirrhines. Orbital hypertrophy in Tarsius and Aotus accommodates the enormously enlarged eyes of these taxa. This extreme ocular hypertrophy seen in extant nocturnal haplorhines is an adaptation for both enhanced visual acuity and sensitivity in conditions of low light intensity. Second, the relative size of the optic foramen is highly correlated with the degree of retinal summation and inferred visual acuity. Diurnal haplorhines exhibit proportionately larger optic foramina, less central retinal summation, and much higher visual acuity than do all other primates. Diurnal strepsirrhines exhibit a more subtle but significant parallel enlargement of the optic foramen and a decrease in retinal summation relative to the condition seen in nocturnal primates. These twin osteological variables of orbit size and optic foramen size may be used to draw inferences regarding the activity pattern, retinal anatomy, and visual acuity of fossil primates. Our measurements demonstrate that the omomyiforms Microchoerus, Necrolemur, Shoshonius, and Tetonius, adapiform Pronycticebus, and the possible lorisiform Plesiopithecus were likely nocturnal on the basis of orbit diameter. The adapiforms Leptadapis, Adapis, and Notharctus, the phylogenetically enigmatic Rooneyia, the early anthropoids Proteopithecus, Catopithecus, and Aegyptopithecus, and early platyrrhine Dolichocebus were likely diurnal. The activity pattern of the platyrrhine Tremacebus is obscure. Plesiopithecus, Pronycticebus, Microchoerus, and Necrolemur probably had eyes that were very similar to those of extant nocturnal primates, with a high degree of retinal summation and rod-dominated retinae. Leptadapis and Rooneyia likely had eyes similar to those of extant diurnal strepsirrhines, with moderate degrees of retinal summation, a larger cone:rod ratio than in nocturnal primates, and, more speculatively, well-developed areae centrales similar to those of diurnal strepsirrhines. Adapis exhibited uncharacteristically high degrees of retinal summation for a small-eyed (likely diurnal) primate. None of the adapiform or omomyiform taxa for which we were able to obtain optic foramen dimensions exhibited the extremely high visual acuity characteristic of extant diurnal haplorhines.
Collapse
Affiliation(s)
- R F Kay
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
13
|
Douglas RH, Partridge JC, Marshall NJ. The eyes of deep-sea fish. I: Lens pigmentation, tapeta and visual pigments. Prog Retin Eye Res 1998; 17:597-636. [PMID: 9777651 DOI: 10.1016/s1350-9462(98)00002-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation; very dim downwelling sunlight and bioluminescence, both of which are, in most cases, maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals, the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deep-sea tapeta usually appear blue to the human observer, reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, ca. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer, these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean.
Collapse
Affiliation(s)
- R H Douglas
- Department Optometry and Visual Science, City University, London, U.K
| | | | | |
Collapse
|