Liao H, Iwahara M, Koike T, Hata N, Sakuma I, Dohi T. Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system.
APPLIED OPTICS 2005;
44:305-315. [PMID:
15717819 DOI:
10.1364/ao.44.000305]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose a scalable high-resolution autostereoscopic display that uses integral videography (IV) and a seamless multiprojection system. IV is an animated extension of integral photography (IP). Although IP and IV are ideal ways to display three-dimensional images, their spatial viewing resolution needs improvement; the pixel pitch of the display and the lens pitch are the main factors affecting IV image quality. We improved the quality by increasing the number and density of the pixels. Using multiple projectors, we create a scalable high-resolution image and project it onto a small screen using long-focal-length projection optics. To generate seamless IV images, we developed an image calibration method for geometric correction and color modulation. We also fabricated a lens array especially for the display device. Experiments were conducted with nine XGA projectors and nine PCs for parallel image rendering and displaying. A total of 2868 x 2150 pixels were displayed on a 241 mm x 181 mm (302.4 dots/in.) rear-projection screen. The lens pitch was 1.016 mm, corresponding to 12 pixels of the projected image. Measurement of the geometric accuracy of the reproduced IV images demonstrated that the spatial resolution of the display system matched that of the theoretical analysis.
Collapse