1
|
Baker NE, Li K, Quiquand M, Ruggiero R, Wang LH. Eye development. Methods 2014; 68:252-9. [PMID: 24784530 DOI: 10.1016/j.ymeth.2014.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The eye has been one of the most intensively studied organs in Drosophila. The wealth of knowledge about its development, as well as the reagents that have been developed, and the fact that the eye is dispensable for survival, also make the eye suitable for genetic interaction studies and genetic screens. This article provides a brief overview of the methods developed to image and probe eye development at multiple developmental stages, including live imaging, immunostaining of fixed tissues, in situ hybridizations, and scanning electron microscopy and color photography of adult eyes. Also summarized are genetic approaches that can be performed in the eye, including mosaic analysis and conditional mutation, gene misexpression and knockdown, and forward genetic and modifier screens.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ke Li
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Manon Quiquand
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Robert Ruggiero
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
2
|
Mitosis in neurons: Roughex and APC/C maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons. PLoS Genet 2012; 8:e1003049. [PMID: 23209426 PMCID: PMC3510051 DOI: 10.1371/journal.pgen.1003049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023] Open
Abstract
The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis. Neurons generally differentiate and never divide again. One barrier to understanding the mechanisms has been the paucity of genetic mutations that result in neuronal cell cycles. Here we show that mutation in three genes lead to cell cycle re-entry by a particular class of developing photoreceptor neurons in the fly retina. Strikingly, these neurons do not complete cell division but only divide their nuclei. The binucleated neurons then typically retain one nucleus in its normal location in the cell body, while transporting the other into the growing axon like other axonal material. Our findings identify Cyclin A regulation as crucial to maintaining cell cycle exit by at least some neurons and identify a neuron-specific defect in cell division as a further barrier to neuron proliferation. Because defects in transporting axonal material have been implicated in the origin of multiple neurodegenerative diseases, our findings also suggest a possible connection between defective cell cycle regulation and neuronal cell death.
Collapse
|
3
|
Eastwood K, Yin C, Bandyopadhyay M, Bidwai A. New insights into the Orange domain of E(spl)-M8, and the roles of the C-terminal domain in autoinhibition and Groucho recruitment. Mol Cell Biochem 2011; 356:217-25. [PMID: 21789514 DOI: 10.1007/s11010-011-0996-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/29/2022]
Abstract
CK2 is a Ser/Thr protein kinase that regulates the activity of the Drosophila basic-helix-loop-helix (bHLH) repressor M8 encoded by the Enhancer of split Complex (E(spl)C) during neurogenesis. Specifically, phosphorylation appears to elicit a conformational change in an autoinhibited state of M8 to one that is permissive for repression. We describe biochemical and molecular modeling studies that provide new insights into repression by M8. Our studies implicate the phosphorylation domain in autoinhibition, and indicate that binding of the co-repressor Groucho (Gro) is context-dependent. Molecular modeling indicates that the Orange domain, proposed to be a specificity-determinant, may instead play a structural role, and that a conformational rearrangement of this domain may be necessary for repression. This model also provides a structural mechanism for the behavior of mutant alleles of the m8 gene. The insights gained from these studies should be applicable to the conserved metazoan bHLH repressors of the Hairy and Enhancer of Split (HES) family that are related to Drosophila M8.
Collapse
Affiliation(s)
- Karen Eastwood
- Department of Biology, West Virginia University, Life Sciences Building, Morgantown, WV 26506-6057, USA
| | | | | | | |
Collapse
|
4
|
Lubensky DK, Pennington MW, Shraiman BI, Baker NE. A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 2011; 108:11145-50. [PMID: 21690337 PMCID: PMC3131319 DOI: 10.1073/pnas.1015302108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The crystalline photoreceptor lattice in the Drosophila eye is a paradigm for pattern formation during development. During eye development, activation of proneural genes at a moving front adds new columns to a regular lattice of R8 photoreceptors. We present a mathematical model of the governing activator-inhibitor system, which indicates that the dynamics of positive induction play a central role in the selection of certain cells as R8s. The "switch and template" patterning mechanism we observe is mathematically very different from the well-known Turing instability. Unlike a standard lateral inhibition model, our picture implies that R8s are defined before the appearance of the complete group of proneural cells. The model reproduces the full time course of proneural gene expression and accounts for specific features of the refinement of proneural groups that had resisted explanation. It moreover predicts that perturbing the normal template can lead to eyes containing stripes of R8 cells. We observed these stripes experimentally after manipulation of the Notch and scabrous genes. Our results suggest an alternative to the generally assumed mode of operation for lateral inhibition during development; more generally, they hint at a broader role for bistable switches in the initial establishment of patterns as well as in their maintenance.
Collapse
Affiliation(s)
- David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
| | | | | | | |
Collapse
|
5
|
Kunttas-Tatli E, Bose A, Kahali B, Bishop CP, Bidwai AP. Functional dissection of Timekeeper (Tik) implicates opposite roles for CK2 and PP2A during Drosophila neurogenesis. Genesis 2010; 47:647-58. [PMID: 19536808 DOI: 10.1002/dvg.20543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Repression by E(spl)M8 during inhibitory Notch (N) signaling (lateral inhibition) is regulated, in part, by protein kinase CK2, but the involvement of a phosphatase has been unclear. The studies we report here employ Tik, a unique dominant-negative (DN) mutation in the catalytic subunit of CK2, in a Gal4-UAS based assay for impaired lateral inhibition. Specifically, overexpression of Tik elicits ectopic bristles in N(+) flies and suppresses the retinal defects of the gain-of-function allele N(spl). Functional dissection of the two substitutions in Tik (M(161)K and E(165)D), suggests that both mutations contribute to its DN effects. While the former replacement compromises CK2 activity by impairing ATP-binding, the latter affects a conserved motif implicated in binding the phosphatase PP2A. Accordingly, overexpression of microtubule star (mts), the PP2A catalytic subunit closely mimics the phenotypic effects of loss of CK2 functions in N(+) or N(spl) flies, and elicits notched wings, a characteristic of N mutations. Our findings suggest antagonistic roles for CK2 and PP2A during inhibitory N signaling.
Collapse
Affiliation(s)
- Ezgi Kunttas-Tatli
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | | | |
Collapse
|
6
|
Kahali B, Bose A, Karandikar U, Bishop CP, Bidwai AP. On the mechanism underlying the divergent retinal and bristle defects of M8* (E(spl)D) in Drosophila. Genesis 2009; 47:456-68. [PMID: 19415625 DOI: 10.1002/dvg.20521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our results, using endogenous mutants and Gal4-UAS driven transgenes, implicate multisite phosphorylation in repression by E(spl)M8. We propose that these phosphorylations occur in the morphogenetic furrow (MF) to reverse an auto-inhibited state of M8, enabling repression of Atonal during R8 specification. Our studies address the paradoxical behavior of M8*, the truncated protein encoded by E(spl)D. We suggest that differences in N signaling in the bristle versus the eye underlie the antimorphic activity of M8* in N(+) (ectopic bristles) and hypermorphic activity in N(spl) (reduced eye). Ectopic M8* impairs eye development (in N(spl)) only during establishment of the atonal feedback loop (anterior to the MF), but is ineffective after this time point. In contrast, a CK2 phosphomimetic M8 lacking Groucho (Gro) binding, M8SDDeltaGro, acts antimorphic in N(+) and suppresses the eye/R8 and bristle defects of N(spl), as does reduced dosage of E(spl) or CK2. Multisite phosphorylation could serve as a checkpoint to enable a precise onset of repression, and this is bypassed in M8*. Additional implications are discussed.
Collapse
Affiliation(s)
- Bhaskar Kahali
- Department of Biology, West Virginia University, Morgantown, 26506-6057, USA
| | | | | | | | | |
Collapse
|
7
|
Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 2009; 29:12865-77. [PMID: 19828801 DOI: 10.1523/jneurosci.3382-09.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertebrate retinal progenitor cells (RPCs) are pluripotent, but pass through competence states that progressively restrict their developmental potential (Cepko et al., 1996; Livesey and Cepko, 2001; Cayouette et al., 2006). In the rodent eye, seven retinal cell classes differentiate in overlapping waves, with RGCs, cone photoreceptors, horizontals, and amacrines forming predominantly before birth, and rod photoreceptors, bipolars, and Müller glia differentiating postnatally. Both intrinsic and extrinsic factors regulate each retinal cell type (for review, see Livesey and Cepko, 2001). Here, we conditionally deleted the transcription factor Rbpj, a critical integrator of multiple Notch signals (Jarriault et al., 1995; Honjo, 1996; Kato et al., 1997; Han et al., 2002), during prenatal mouse retinal neurogenesis. Removal of Rbpj caused reduced proliferation, premature neuronal differentiation, apoptosis, and profound mispatterning. To determine the cell autonomous requirements for Rbpj during RGC and cone formation, we marked Cre-generated retinal lineages with GFP expression, which showed that Rbpj autonomously promotes RPC mitotic activity, and suppresses RGC and cone fates. In addition, the progressive loss of Rbpj-/- RPCs resulted in a diminished progenitor pool available for rod photoreceptor formation. This circumstance, along with the overproduction of Rbpj-/- cones, revealed that photoreceptor development is under homeostatic regulation. Finally, to understand how the Notch pathway regulates the simultaneous formation of multiple cell types, we compared the RGC and cone phenotypes of Rbpj to Notch1 (Jadhav et al., 2006b; Yaron et al., 2006), Notch3, and Hes1 mutants. We found particular combinations of Notch pathway genes regulate the development of each retinal cell type.
Collapse
|
8
|
Baker NE, Bhattacharya A, Firth LC. Regulation of Hh signal transduction as Drosophila eye differentiation progresses. Dev Biol 2009; 335:356-66. [PMID: 19761763 DOI: 10.1016/j.ydbio.2009.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
Differentiation of the Drosophila retina occurs as a morphogenetic furrow sweeps anteriorly across the eye imaginal disc, driven by Hedgehog secretion from photoreceptor precursors differentiating behind the furrow. A BTB protein, Roadkill, is expressed posterior to the furrow and targets the Hedgehog signal transduction component Cubitus interruptus for degradation by Cullin-3 and the proteosome. Clonal analysis and conditional mutant studies establish that roadkill transcription is activated by the EGF receptor and Ras pathway in most differentiating retinal cells, and by both EGF receptor/Ras and by Hedgehog signaling in cells that remain unspecified. These findings outline a circuit by which Hedgehog signal transduction is modified as Hedgehog signaling initiates retinal differentiation. A model is presented for regulation of the Cullin-3 and Cullin-1 pathways that modifies Hedgehog signaling as the morphogenetic furrow moves and the responses of retinal cells change.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
9
|
Bhattacharya A, Baker NE. The HLH protein Extramacrochaetae is required for R7 cell and cone cell fates in the Drosophila eye. Dev Biol 2008; 327:288-300. [PMID: 19118542 DOI: 10.1016/j.ydbio.2008.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022]
Abstract
Notch signaling is one of the most important pathways in development and homeostasis, and is altered in multiple pathologies. Study of Drosophila eye development shows that Notch signaling depends on the HLH protein Extramacrochaetae. Null mutant clones show that extramacrochaetae is required for multiple aspects of eye development that depend on Notch signaling, including morphogenetic furrow progression, differentiation of R4, R7 and cone cell types, and rotation of ommatidial clusters. Detailed analysis of R7 and cone cell specification reveals that extramacrochaetae acts cell autonomously and epistatically to Notch, and is required for normal expression of bHLH genes encoded by the E(spl)-C which are effectors of most Notch signaling. A model is proposed in which Extramacrochaetae acts in parallel to or as a feed-forward regulator of the E(spl)-Complex to promote Notch signaling in particular cellular contexts.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
10
|
Abstract
Endocytosis regulates Notch signaling in both signaling and receiving cells. A puzzling observation is that endocytosis of transmembrane ligand by the signaling cells is required for Notch activation in adjacent receiving cells. A key to understanding why signaling depends on ligand endocytosis lies in identifying and understanding the functions of crucial endocytic proteins. One such protein is Epsin, an endocytic factor first identified in vertebrate cells. Here, we show in Drosophila that Auxilin, an endocytic factor that regulates Clathrin dynamics, is also essential for Notch signaling. Auxilin, a co-factor for the ATPase Hsc70, brings Hsc70 to Clathrin cages. Hsc70/Auxilin functions in vesicle scission and also in uncoating Clathrin-coated vesicles. We find that like Epsin, Auxilin is required in Notch signaling cells for ligand internalization and signaling. Results of several experiments suggest that the crucial role of Auxilin in signaling is, at least in part, the generation of free Clathrin. We discuss these observations in the light of current models for the role of Epsin in ligand endocytosis and the role of ligand endocytosis in Notch signaling.
Collapse
Affiliation(s)
- Suk Ho Eun
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
11
|
Baker NE. Patterning signals and proliferation in Drosophila imaginal discs. Curr Opin Genet Dev 2007; 17:287-93. [PMID: 17624759 DOI: 10.1016/j.gde.2007.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
Recent studies indicate that signaling pathways with well-known roles in patterning also directly regulate cell proliferation. During the differentiation of the retina, Hedgehog, Decapentaplegic, Notch and the EGF receptor regulate proliferation spatially through transcriptional regulation of string, dacapo, and as yet unidentified regulators of Retinoblastoma and Cyclin E/Cdk2 activities. In the developing wing, a novel response to discontinuities in Decapentaplegic signaling combines with concentration-dependent effects to achieve a uniform proliferation pattern in response to a Decapentaplegic gradient. Damage to growing tissues is repaired by transient Decapentaplegic and Wingless secretion from dying cells to induce compensatory proliferation. Diverse spatial patterns of fate specification and of proliferation can arise through distinct combinations of signaling pathways. Reminiscent of pattern formation, cell cycle effects of each signaling pathway differ in distinct developmental fields, making use of a variety of target genes.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Hagedorn EJ, Bayraktar JL, Kandachar VR, Bai T, Englert DM, Chang HC. Drosophila melanogaster auxilin regulates the internalization of Delta to control activity of the Notch signaling pathway. ACTA ACUST UNITED AC 2006; 173:443-52. [PMID: 16682530 PMCID: PMC2063844 DOI: 10.1083/jcb.200602054] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain-containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch.
Collapse
MESH Headings
- Animals
- Auxilins/genetics
- Auxilins/physiology
- Body Patterning/genetics
- Body Patterning/physiology
- Clathrin/genetics
- Clathrin/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Endocytosis/genetics
- Endocytosis/physiology
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Eye Abnormalities/genetics
- Eye Abnormalities/ultrastructure
- Gene Expression Regulation, Developmental
- Genotype
- HSC70 Heat-Shock Proteins/genetics
- HSC70 Heat-Shock Proteins/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Electron, Scanning
- Mutation/genetics
- Nervous System/embryology
- Nervous System/metabolism
- Phenotype
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/metabolism
- RNA, Small Interfering/genetics
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Wings, Animal/embryology
- Wings, Animal/metabolism
- Wings, Animal/ultrastructure
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wech I, Nagel AC. Mutations in rugose promote cell type-specific apoptosis in the Drosophila eye. Cell Death Differ 2005; 12:145-52. [PMID: 15647755 DOI: 10.1038/sj.cdd.4401538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RUGOSE (RG): encodes an A kinase anchor protein and was isolated as a genetic interactor of the Notch and epidermal growth factor receptor (EGFR) pathways during eye development in Drosophila. rg mutants display a small, rough eye phenotype primarily caused by the loss of cone cells. Here we show that the basis of this phenotype is cell type-specific apoptosis rather than transformation and hence can be rescued by reduction of proapoptotic signals. Moreover, a nearly complete rescue is observed by an increased Notch signal suggesting an antiapoptotic function of Notch in this developmental context. Cone cell loss in rg mutants is accompanied by enhanced Jun N-terminal kinase activity and, concomitantly, by a reduction of EGFR signalling activity. Together, these findings support the idea that rg plays an important role in the integration of different signals required for the exact regulation of cone cell development and survival.
Collapse
Affiliation(s)
- I Wech
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | | |
Collapse
|
14
|
Dong Y, Friedrich M. Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Dev Genes Evol 2005; 215:177-97. [PMID: 15747130 DOI: 10.1007/s00427-004-0465-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
The signaling factor Wingless regulates multiple steps during the postembryonic development of the Drosophila eye. To obtain insight into the molecular regulation of embryonic eye development in primitive insects, we studied the expression of wg and genes projected to interact with wg in the grasshopper Schistocerca americana. We find that the dynamic and complex expression of wg in the early grasshopper procephalon results in three paired expression domains with relevance to eye primordium development. By comparison with Drosophila, these domains are compatible with a conserved function of wg during anteroposterior and dorsoventral axis formation by repression of retinal differentiation and stimulation of tissue proliferation. This is further supported by the expression of grasshopper orthologs of the retina determination genes sine oculis and eyes absent, and by inhibition of retina differentiation in grasshopper eye primordia cultured with LiCl. Surprisingly, the expression of wg and the grasshopper orthologs of pannier, fringe, Delta, and Iroquois complex is inconsistent with induction of midline centered Notch signaling activity, which is essential for Drosophila retina development. Similarly substantial evolutionary divergence is found concerning the control of retina versus head epidermis specification. The transcription factor Extradenticle (Exd), which cooperates with wg in specifying the Drosophila head epidermis, is not detected outside the labral and antennal primordia in the embryonic grasshopper head. Our results, which provide the first insight into the molecular control of eye primordium formation in primitive insects, suggest substantial modification of this process during the evolution of the Drosophila mode of postembryonic eye development.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | |
Collapse
|
15
|
Overstreet E, Fitch E, Fischer JA. Fat facets and Liquid facets promote Delta endocytosis and Delta signaling in the signaling cells. Development 2004; 131:5355-66. [PMID: 15469967 DOI: 10.1242/dev.01434] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endocytosis modulates the Notch signaling pathway in both the signaling and receiving cells. One recent hypothesis is that endocytosis of the ligand Delta by the signaling cells is essential for Notch activation in the receiving cells. Here, we present evidence in strong support of this model. We show that in the developing Drosophila eye Fat facets (Faf), a deubiquitinating enzyme, and its substrate Liquid facets (Lqf), an endocytic epsin, promote Delta internalization and Delta signaling in the signaling cells. We demonstrate that while Lqf is necessary for three different Notch/Delta signaling events at the morphogenetic furrow, Faf is essential only for one: Delta signaling by photoreceptor precluster cells, which prevents recruitment of ectopic neurons. In addition, we show that the ubiquitin-ligase Neuralized (Neur), which ubiquitinates Delta, functions in the signaling cells with Faf and Lqf. The results presented bolster one model for Neur function in which Neur enhances Delta signaling by stimulating Delta internalization in the signaling cells. We propose that Faf plays a role similar to that of Neur in the Delta signaling cells. By deubiquitinating Lqf, which enhances the efficiency of Delta internalization, Faf stimulates Delta signaling.
Collapse
Affiliation(s)
- Erin Overstreet
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Moffett Molecular Biology Building, 2500 Speedway, Austin, TX 78712, USA
| | | | | |
Collapse
|
16
|
Fu W, Baker NE. Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 2003; 130:5229-39. [PMID: 12954721 DOI: 10.1242/dev.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Drosophila, a wave of differentiation progresses across the retinal field in response to signals from posterior cells. Hedgehog (Hh), Decapentaplegic (Dpp) and Notch (N) signaling all contribute. Clones of cells mutated for receptors and nuclear effectors of one, two or all three pathways were studied to define systematically the necessary and sufficient roles of each signal. Hh signaling alone was sufficient for progressive differentiation, acting through both the transcriptional activator Ci155 and the Ci75 repressor. In the absence of Ci, Dpp and Notch signaling together provided normal differentiation. Dpp alone sufficed for some differentiation, but Notch was not sufficient alone and acted only to enhance the effect of Dpp. Notch acted in part through downregulation of Hairy; Hh signaling downregulated Hairy independently of Notch. One feature of this signaling network is to limit Dpp signaling spatially to a range coincident with Hh.
Collapse
Affiliation(s)
- Weimin Fu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|