1
|
Abdu-Allah HHM, Watanabe K, Completo GC, Sadagopan M, Hayashizaki K, Takaku C, Tamanaka T, Takematsu H, Kozutsumi Y, Paulson JC, Tsubata T, Ando H, Ishida H, Kiso M. CD22-antagonists with nanomolar potency: the synergistic effect of hydrophobic groups at C-2 and C-9 of sialic acid scaffold. Bioorg Med Chem 2011; 19:1966-71. [PMID: 21349726 DOI: 10.1016/j.bmc.2011.01.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 12/01/2022]
Abstract
In earlier studies, we identified the C-9 amido derivative 1 (9-(4'-hydroxy-4-biphenyl)acetamido-9-deoxy-Neu5Gcα2-6GalOMP) and the C-9 amino derivative 2 (9-(4'-hydroxy-4-biphenyl)methylamino-9-deoxy-Neu5Gcα2-6GalOMP) have the most promising affinity for mouse CD22 and human CD22, respectively. Replacing the subterminal galactose residue (2-6Gal-OMP) of 1 with benzyl (5) or biphenylmethyl (6) as aglycone led to even higher potency for mCD22. In this study, both compounds showed improved potency and selectivity for CD22 (IC(50) 70 nM) and 712-fold more selective for CD22 than for MAG. The corresponding derivatives of 2, compounds 8 and 9, showed comparable activity to 2 but lower potency and selectivity than 5 and 6. Although compounds 5-9 are simple and small molecular weight antagonists, they showed much high potency and selectivity than the corresponding compounds having α 2-6Gal linkage. Both biological and computational docking simulation studies suggest that the 2-6Gal-OMP residues of 1 and 2 are not critical for binding process and could be replaced with hydrophobic non-carbohydrate moieties. The data presented herein has significant implications for the design and discovery of next-generation CD22-antagonists.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Department of Applied Bio-organic Chemistry, Faculty of Applied Biological Sciences, The United Graduate School of Agricultural Sciences, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Schwardt O, Gäthje H, Vedani A, Mesch S, Gao GP, Spreafico M, von Orelli J, Kelm S, Ernst B. Examination of the Biological Role of the α(2→6)-Linked Sialic Acid in Gangliosides Binding to the Myelin-Associated Glycoprotein (MAG). J Med Chem 2009; 52:989-1004. [DOI: 10.1021/jm801058n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Schwardt
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Heiko Gäthje
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Angelo Vedani
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Stefanie Mesch
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Gan-Pan Gao
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Morena Spreafico
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Johannes von Orelli
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Sørge Kelm
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| | - Beat Ernst
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Institute for Physiological Biochemistry, University Bremen, D-28334 Bremen, Germany
| |
Collapse
|
3
|
Rapoport EM, Pazynina GV, Sablina MA, Crocker PR, Bovin NV. Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides. BIOCHEMISTRY (MOSCOW) 2006; 71:496-504. [PMID: 16732727 DOI: 10.1134/s0006297906050051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Soluble siglecs-1, -4, -5, -6, -7, -8, -9, and -10 were probed with polyacrylamide glycoconjugates in which: 1) the Neu5Ac residue was substituted by a sulfate group (Su); 2) glycoconjugates contained both Su and Neu5Ac; 3) sialoglycoconjugates contained a tyrosine-O-sulfate residue. It was shown that sulfate derivatives of LacNAc did not bind siglecs-1, -4, -5, -6, -7, -8, -9, and -10; binding of 6'-O-Su-LacNAc to siglec-8 was stronger than binding of 3'SiaLacNAc. The relative affinity of 3'-O-Su-TF binding to siglecs-1, -4, and -8 was similar to that of 3'SiaTF. 3'-O-Su-Le(c) displayed two-fold weaker binding to siglec-1 and siglec-4 than 3'SiaLe(c). The interaction of soluble siglecs with sulfated oligosaccharides containing sialic acid was also studied. It was shown that siglecs-1, -4, -5, -6, -7, -9, and -10 did not interact with these compounds; binding of 6-O-Su-3'SiaLacNAc and 6-O-Su-3'SiaTF to siglec-8 was weaker than that of the corresponding sulfate-free sialoside probes. Siglec-8 displayed affinity to 6'-O-Su-LacNAc and 6'-O-Su-SiaLe(x), and defucosylation of the latter compound led to an increase in the binding. Sialoside probes containing tyrosine-O-sulfate residue did not display increased affinity to siglecs-1 and -5 compared with glycoconjugates containing only sialoside. Cell-bound siglecs-1, -5, -7, and -9 did not interact with 6-O-Su-3'SiaLacNAc, whereas the sulfate-free probe 3'SiaLacNAc demonstrated binding. In contrast, the presence of sulfate in 6-O-Su-6'SiaLacNAc did not affect binding of the sialoside probe to siglecs. 6'-O-Su-SiaLe(x) displayed affinity to cell-bound siglecs-1 and -5; its isomer 6-O-Su-SiaLe(x) bound more strongly to siglecs-1, -5, and -9 than SiaLe(x).
Collapse
Affiliation(s)
- E M Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
4
|
Neubacher B, Scheid S, Kelm S, Frasch AC, Meyer B, Thiem J. Synthesis of Neu5Ac Oligosaccharides and Analogues by Transglycosylation and their Binding Properties as Ligands to MAG. Chembiochem 2006; 7:896-9. [PMID: 16607670 DOI: 10.1002/cbic.200500543] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Björn Neubacher
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.
Collapse
Affiliation(s)
- Ajit Varki
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
6
|
Rapoport E, Khaidukov S, Baidina O, Bojenko V, Moiseeva E, Pasynina G, Karsten U, Nifant'ev N, LePendue J, Bovin N. Involvement of the Galbeta1 - 3GalNAcbeta structure in the recognition of apoptotic bodies by THP-1 cells. Eur J Cell Biol 2003; 82:295-302. [PMID: 12868597 DOI: 10.1078/0171-9335-00314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific apoptotic glycosylation pattern may play an assistant or even a causative role in phagocytosis of apoptotic bodies. To elucidate the role of macrophages in lectin-mediated phagocytosis, an experimental system was used, where monocyte-derived THP-1 cells engulf the apoptotic bodies from the melanoma cell line MELJUSO. A flow cytometry assay was performed to reveal lectin expression and quantify the phagocytosis of apoptotic bodies. Taking into account that siglecs, a mannose receptor and galectins expressed on macrophages could be involved in engulfment of apoptotic bodies we studied their potential expression on THP-1 cells by means of polyacrylamide glycoconjugates. A strong binding of the cells to siglec ligands (3'SiaLac, 6'SiaLac, [Neu5Acalpha2-8]2) and galectin ligands (LacNAc, GalNAcbeta1 - 4GlcNAc, Galbeta1 - 3GalNAcbeta and asialoGM1) was observed. To reveal the corresponding targets on apoptotic bodies, the carbohydrate pattern of MELJUSO cells was analyzed. The apoptotic membrane was characterized by a high level of glycans terminated by galactose or sialic acid. To study lectin-mediated phagocytosis of apoptotic bodies by THP-1 cells, an inhibitory phagocytosis assay was performed. Binding of Galbeta1 - 3GalNAc- or LacNAc-specific reagents (lectins and antibodies) to apoptotic bodies abolished their engulfment by the THP-1 cells whereas blocking of Neu5Acalpha2 - 6 or Neu5Acalpha2 - 3 sites by the corresponding lectins was not effective. Furthermore, Galbeta1 - 3GalNAcbeta-PAA or asialoGM1-PAA binding to the THP-1 cells decreased phagocytosis, whereas two other potent THP-1-binding probes, LacNAc-PAA and GalNAcbeta1 - 4GlcNAc-PAA did not inhibit phagocytosis. Thus, Galbeta1 - 3GalNAcbeta-terminated chains represented on the apoptotic bodies but not the other tested galectin ligands appear to be a target for THP-1 cells.
Collapse
Affiliation(s)
- Eugenia Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zaccai NR, Maenaka K, Maenaka T, Crocker PR, Brossmer R, Kelm S, Jones EY. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 2003; 11:557-67. [PMID: 12737821 DOI: 10.1016/s0969-2126(03)00073-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Siglec family of receptors mediates cell surface interactions through recognition of sialylated glycoconjugates. The crystal structure of the N-terminal immunoglobulin-like domain of the Siglec sialoadhesin (SnD1) in complex with 2,3-sialyllactose has informed the design of sialic acid analogs (sialosides) that bind Siglecs with significantly enhanced affinities and specificities. Binding assays against sialoadhesin (Sn; Siglec-1), CD22 (Siglec-2), and MAG (Siglec-4) show a 10- to 300-fold reduction in IC(50) values (relative to methyl-alpha-Neu5Ac) for three sialosides bearing aromatic group modifications of the glycerol side chain: Me-alpha-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Me-alpha-9-N-(naphthyl-2-carbonyl)-amino-9-deoxy-Neu5Ac (NAP), and Me-alpha-9-N-(biphenyl-4-carbonyl)-amino-9-deoxy-Neu5Ac (BIP). Crystal structures of these sialosides in complex with SnD1 suggest explanations for the differences in specificity and affinity, providing further ideas for compound design of physiological and potentially therapeutic relevance.
Collapse
Affiliation(s)
- Nathan R Zaccai
- CR-UK Receptor Structure Research Group, Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Connolly NP, Jones M, Watt SM. Human Siglec-5: tissue distribution, novel isoforms and domain specificities for sialic acid-dependent ligand interactions. Br J Haematol 2002; 119:221-38. [PMID: 12358929 DOI: 10.1046/j.1365-2141.2002.03808.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human Siglec-5 is a sialic acid binding immunoglobulin (Ig)-like lectin (Siglec), comprising one N-terminal IgV-SET domain followed by three IgC2-SET domains, and a cytoplasmic domain with ITIM and SAP motifs which regulate cell signalling. We report the differential distribution of hSiglec-5 on neutrophil and macrophage subsets in tissues using monoclonal antibodies, 1A5 and 2H8, which require the first IgC2-SET domain for binding. Interestingly, hSiglec-5 was especially prominent on macrophages in reactive lymph nodes. We have identified four isoforms of hSiglec-5 possessing three (hSiglec-5-3L and -3C) or four (hSiglec-5-4L and -4S) extracellular domains linked to long (hSiglec-5-3L and -4L) or short (hSiglec-5-4S) cytoplasmic tails or existing as a soluble isoform (hSiglec-5-3C). hSiglec-5-4L has the broadest tissue distribution, being detected in adult spleen, thymus, lymph node, peripheral blood leucocytes and bone marrow, and in fetal lung and liver. A soluble Fc chimaeric protein containing the hSiglec-5-4L extracellular domain binds in a sialic acid-dependent manner to glycophorin A on human erythrocytes and to alpha2-3- and alpha2-6-sialyllactose moieties. Domain deletion mutants of hSiglec-5(D1-4)-Fc reveal that the first three IgC2-SET domains are required for optimal binding, with adhesion being abolished if the first IgC2-SET domain is deleted. This indicates that each hSiglec-5 isoform will interact with sialic acid ligands and provides the first step towards defining structure-function relationships of hSiglec-5 isoforms.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/metabolism
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Chimera
- Enzyme-Linked Immunosorbent Assay/methods
- Epitopes
- Erythrocytes/metabolism
- Hematopoietic Stem Cells/metabolism
- Humans
- Lectins/chemistry
- Lectins/genetics
- Lectins/metabolism
- Macrophages/metabolism
- Molecular Sequence Data
- Monocytes/metabolism
- N-Acetylneuraminic Acid/metabolism
- Neutrophils/metabolism
- Protein Isoforms/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Nicholas P Connolly
- National Blood Service, Stem Cell Laboratory, National Blood Service Oxford Centre, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|