1
|
Wei C, Kesner B, Yin H, Lee JT. Imprinted X chromosome inactivation at the gamete-to-embryo transition. Mol Cell 2024; 84:1442-1459.e7. [PMID: 38458200 PMCID: PMC11031340 DOI: 10.1016/j.molcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Imprinted X chromosome inactivation offers up a double dose of epigenetics. Proc Natl Acad Sci U S A 2015; 112:14408-9. [PMID: 26578809 DOI: 10.1073/pnas.1520097112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
3
|
Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proc Natl Acad Sci U S A 2015; 112:14415-22. [PMID: 26489649 DOI: 10.1073/pnas.1519528112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The long noncoding X-inactivation-specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line.
Collapse
|
4
|
Abstract
A growing body of evidence suggests that noncoding RNA (ncRNA) transcripts play a fundamental role in regulating gene expression via targeting epigenetic modifications to particular loci in the genome. Classical examples of such regulation are X-chromosome inactivation and genomic imprinting; however it is now clear that ncRNAs exert their influence over a wider array of genes throughout the metazoan genome. Accumulating evidence suggests that the ncRNAs act as guides for epigenetic silencing complexes to specific sites within the genome. Those ncRNAs involved in regulating the expression of particular protein-coding genes offer panoply of targets that when suppressed can result in derepression or activation of the ncRNA-targeted locus. Recent work has determined the underlying mechanisms involved in ncRNA-targeted epigenetic regulation in a subset of genes. These findings have resulted in a paradigm shift whereby targeted gene activation can be achieved, by targeting endogenous regulatory ncRNAs, producing potential novel treatments for genetic and infectious diseases where increases in gene expression are required.
Collapse
Affiliation(s)
- Caio Damski
- Biotechnology and Biomedical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia,
| | | |
Collapse
|
5
|
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152:1308-23. [PMID: 23498939 DOI: 10.1016/j.cell.2013.02.016] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
6
|
Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 2012; 22:1864-76. [PMID: 22948768 PMCID: PMC3460182 DOI: 10.1101/gr.133751.111] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
X chromosome inactivation (XCI) achieves dosage balance in mammals by repressing one of two X chromosomes in females. During XCI, the long noncoding Xist RNA and Polycomb proteins spread along the inactive X (Xi) to initiate chromosome-wide silencing. Although inactivation is known to commence at the X-inactivation center (Xic), how it propagates remains unknown. Here, we examine allele-specific binding of Polycomb repressive complex 2 (PRC2) and chromatin composition during XCI and generate a chromosome-wide profile of Xi and Xa (active X) at nucleosome-resolution. Initially, Polycomb proteins are localized to ∼150 strong sites along the X and concentrated predominantly within bivalent domains coinciding with CpG islands (“canonical sites”). As XCI proceeds, ∼4000 noncanonical sites are recruited, most of which are intergenic, nonbivalent, and lack CpG islands. Polycomb sites are depleted of LINE repeats but enriched for SINEs and simple repeats. Noncanonical sites cluster around the ∼150 strong sites, and their H3K27me3 levels reflect a graded concentration originating from strong sites. This suggests that PRC2 and H3K27 methylation spread along a gradient unique to XCI. We propose that XCI is governed by a hierarchy of defined Polycomb stations that spread H3K27 methylation in cis.
Collapse
Affiliation(s)
- Stefan F Pinter
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ, Lee JT. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet 2011; 7:e1002248. [PMID: 21912526 PMCID: PMC3164691 DOI: 10.1371/journal.pgen.1002248] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022] Open
Abstract
The Tsx gene resides at the X-inactivation center and is thought to encode a protein expressed in testis, but its function has remained mysterious. Given its proximity to noncoding genes that regulate X-inactivation, here we characterize Tsx and determine its function in mice. We find that Tsx is actually noncoding and the long transcript is expressed robustly in meiotic germ cells, embryonic stem cells, and brain. Targeted deletion of Tsx generates viable offspring and X-inactivation is only mildly affected in embryonic stem cells. However, mutant embryonic stem cells are severely growth-retarded, differentiate poorly, and show elevated cell death. Furthermore, male mice have smaller testes resulting from pachytene-specific apoptosis and a maternal-specific effect results in slightly smaller litters. Intriguingly, male mice lacking Tsx are less fearful and have measurably enhanced hippocampal short-term memory. Combined, our study indicates that Tsx performs general functions in multiple cell types and links the noncoding locus to stem and germ cell development, learning, and behavior in mammals. The X-linked gene Tsx is located within the X-inactivation center and is thought to encode a protein expressed in testis, yet its function is not known. Here we show that Tsx is actually a noncoding RNA, a new member of the large noncoding RNA family expressed from the X. Tsx is abundantly expressed in meiotic germ cells, embryonic stem cells, and brain. Targeted deletion of Tsx generates viable offspring, litter ratios are smaller than expected, X-inactivation is mildly affected (in embryonic stem cells), and male animals have smaller testes due to germ cell apoptosis. Mutant embryonic stem cells are severely growth-retarded and differentiate poorly with elevated cell death. Deletion of this noncoding RNA alters mouse behavior, with animals displaying less fear and enhanced short-term memory. Our study indicates that Tsx performs general functions in multiple cell types and links the noncoding locus to stem and germ cell development, learning, and behavior in mammals.
Collapse
Affiliation(s)
- Montserrat C. Anguera
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiyuan Ma
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Danielle Clift
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Satoshi Namekawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raymond J. Kelleher
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Namekawa SH, Lee JT. Detection of nascent RNA, single-copy DNA and protein localization by immunoFISH in mouse germ cells and preimplantation embryos. Nat Protoc 2011; 6:270-84. [PMID: 21372809 PMCID: PMC4335666 DOI: 10.1038/nprot.2010.195] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic reprogramming of the genome takes place during the gamete-to-embryo transition. This transition defines a period of continuous and global change but has been difficult to study because of extremely limited material and varying degrees of chromatin compaction. Improved methods of detecting chromatin and gene expression changes in the germ line and in the preimplantation embryo would greatly enhance the understanding of this crucial developmental transition. Here we describe a protocol developed and used by us that improves the sensitivity of existing fluorescence in situ hybridization (FISH) methods; the protocol described here has enabled us to visualize single-copy DNA targets and corresponding nascent RNA transcripts in preimplantation embryos and during spermatogenesis. Major improvements over alternative methods involve fixation and permeabilization steps. Chromatin epitopes can be visualized simultaneously by combining FISH with immunofluorescence; multicopy and repetitive element expression can also be reliably measured. This procedure (sample preparation and staining) requires 1-1.5 d to complete and will facilitate detailed examination of spatial relationships between chromatin epitopes, DNA and RNA during the dynamic transition from gamete to embryo.
Collapse
Affiliation(s)
- Satoshi H Namekawa
- Department of Molecular Biology, Massachusetts General Hospital, Howard Hughes Medical Institute, Boston, Massachusetts, USA.
| | | |
Collapse
|
9
|
Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT. Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 2010; 30:3187-205. [PMID: 20404085 PMCID: PMC2897575 DOI: 10.1128/mcb.00227-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/24/2010] [Accepted: 04/13/2010] [Indexed: 12/12/2022] Open
Abstract
Mammals compensate for unequal X-linked gene dosages between the sexes by inactivating one X chromosome in the female. In marsupials and in the early mouse embryo, X chromosome inactivation (XCI) is imprinted to occur selectively on the paternal X chromosome (X(P)). The mechanisms and events underlying X(P) imprinting remain unclear. Here, we find that the imprinted X(P) can be functionally divided into two domains, one comprising traditional coding genes (genic) and the other comprising intergenic repetitive elements. X(P) repetitive element silencing occurs by the two-cell stage, does not require Xist, and occurs several divisions prior to genic silencing. In contrast, genic silencing initiates at the morula-to-blastocyst stage and absolutely requires Xist. Genes translocate into the presilenced repeat region as they are inactivated, whereas active genes remain outside. Thus, during the gamete-embryo transition, imprinted XCI occurs in two steps, with repeat silencing preceding genic inactivation. Nucleolar association may underlie the epigenetic asymmetry of X(P) and X(M). We hypothesize that transgenerational information (the imprint) is carried by repeats from the paternal germ line or that, alternatively, repetitive elements are silenced at the two-cell stage in a parent-of-origin-specific manner. Our model incorporates aspects of the so-called classical, de novo, and preinactivation hypotheses and suggests that Xist RNA functions relatively late during preimplantation mouse development.
Collapse
Affiliation(s)
- Satoshi H. Namekawa
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Bernhard Payer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Khanh D. Huynh
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Rudolf Jaenisch
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Jeannie T. Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Boston, Massachusetts
| |
Collapse
|
10
|
Abstract
The X-linked region now known as the "X-inactivation center" (Xic) was once dominated by protein-coding genes but, with the rise of Eutherian mammals some 150-200 million years ago, became infiltrated by genes that produce long noncoding RNA (ncRNA). Some of the noncoding genes have been shown to play crucial roles during X-chromosome inactivation (XCI), including the targeting of chromatin modifiers to the X. The rapid establishment of ncRNA hints at a possible preference for long transcripts in some aspects of epigenetic regulation. This article discusses the role of RNA in XCI and considers the advantages RNA offers in delivering allelic, cis-limited, and locus-specific control. Unlike proteins and small RNAs, long ncRNAs are tethered to the site of transcription and effectively tag the allele of origin. Furthermore, long ncRNAs are drawn from larger sequence space than proteins and can mark a unique region in a complex genome. Thus, like their small RNA cousins, long ncRNAs may emerge as versatile and powerful regulators of the epigenome.
Collapse
|
11
|
Abstract
Transcriptome studies are revealing that the eukaryotic genome actively transcribes a diverse repertoire of large noncoding RNAs (ncRNAs), many of which are unannotated and distinct from the small RNAs that have garnered much attention in recent years. Why are they so pervasive, and do they have a function? X-chromosome inactivation (XCI) is a classic epigenetic phenomenon associated with many large ncRNAs. Here, I provide a perspective on how XCI is achieved in mice and suggest how this knowledge can be applied to the rest of the genome. Emerging data indicate that long ncRNAs can function as guides and tethers, and may be the molecules of choice for epigenetic regulation: First, unlike proteins and small RNAs, large ncRNAs remain tethered to the site of transcription, and can therefore uniquely direct allelic regulation. Second, ncRNAs command a much larger sequence space than proteins, and can therefore achieve very precise spatiotemporal control of development. These properties imply that long noncoding transcripts may ultimately rival small RNAs and proteins in their versatility as epigenetic regulators, particularly for locus- and allele-specific control.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
12
|
Abstract
The development of genetic sex determination and cytologically distinct sex chromosomes leads to the potential problem of gene dosage imbalances between autosomes and sex chromosomes and also between males and females. To circumvent these imbalances, mammals have developed an elaborate system of dosage compensation that includes both upregulation and repression of the X chromosome. Recent advances have provided insights into the evolutionary history of how both the imprinted and random forms of X chromosome inactivation have come about. Furthermore, our understanding of the epigenetic switch at the X-inactivation center and the molecular aspects of chromosome-wide silencing has greatly improved recently. Here, we review various facets of the ever-expanding field of mammalian dosage compensation and discuss its evolutionary, developmental, and mechanistic components.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
13
|
Abstract
In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation.
Collapse
Affiliation(s)
- Jan Engelstädter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
14
|
Erwin JA, Lee JT. New twists in X-chromosome inactivation. Curr Opin Cell Biol 2008; 20:349-55. [PMID: 18508252 DOI: 10.1016/j.ceb.2008.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Dosage compensation, the mechanism by which organisms equalize the relative gene expression of dimorphic sex chromosomes, requires action of a diverse range of epigenetic mechanisms. The mammalian form, 'named X-chromosome inactivation' (XCI), involves silencing of one X chromosome in the female cell and regulation by genes that make noncoding RNAs (ncRNA). With large-scale genomic and transcriptome studies pointing to a crucial role for noncoding elements in organizing the epigenome, XCI emerges as a major paradigm and a focus of active research worldwide. With more surprising twists, recent advances point to the significance of RNA-directed chromatin change, chromosomal trans-interactions, nuclear organization, and evolutionary change. These findings have impacted our understanding of general gene regulation and are discussed herein.
Collapse
Affiliation(s)
- Jennifer A Erwin
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT. Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci U S A 2007; 104:9730-5. [PMID: 17535928 PMCID: PMC1887598 DOI: 10.1073/pnas.0700323104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In marsupials, dosage compensation involves silencing of the father's X-chromosome. Because no XIST orthologue has been found, how imprinted X-inactivation occurs is unknown. In eutherians, the X is subject to meiotic sex chromosome inactivation (MSCI) in the paternal germ line and persists thereafter as postmeiotic sex chromatin (PMSC). One hypothesis proposes that the paternal X is inherited by the eutherian zygote as a preinactive X and raises the possibility of a similar process in the marsupial germ line. Here we demonstrate that MSCI and PMSC occur in the opossum. Surprisingly, silencing occurs before X-Y association. After MSCI, the X and Y fuse through a dense plate without obvious synapsis. Significantly, sex chromosome silencing continues after meiosis, with the opossum PMSC sharing features of eutherian PMSC. These results reveal a common gametogenic program in two diverse clades of mammals and support the idea that male germ-line silencing may have provided an ancestral form of mammalian dosage compensation.
Collapse
Affiliation(s)
- Satoshi H. Namekawa
- *Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - John L. VandeBerg
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245; and
| | - John R. McCarrey
- Department of Biology, University of Texas, San Antonio, TX 78249
| | - Jeannie T. Lee
- *Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006; 16:660-7. [PMID: 16581510 DOI: 10.1016/j.cub.2006.01.066] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/19/2022]
Abstract
In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.
Collapse
Affiliation(s)
- Satoshi H Namekawa
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Boumil RM, Ogawa Y, Sun BK, Huynh KD, Lee JT. Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X-inactivation choice in mice. Mol Cell Biol 2006; 26:2109-17. [PMID: 16507990 PMCID: PMC1430288 DOI: 10.1128/mcb.26.6.2109-2117.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/25/2005] [Accepted: 12/21/2005] [Indexed: 11/20/2022] Open
Abstract
During mammalian dosage compensation, one of two X-chromosomes in female cells is inactivated. The choice of which X is silenced can be imprinted or stochastic. Although genetic loci influencing the choice decision have been identified, the primary marks for imprinting and random selection remain undefined. Here, we examined the role of DNA methylation, a mechanism known to regulate imprinting in autosomal loci, and sought to determine whether differential methylation on the two Xs might predict their fates. To identify differentially methylated domains (DMDs) at the X-inactivation center, we used bisulfite sequencing and methylation-sensitive restriction enzyme analyses. We found DMDs in Tsix and Xite, two genes previously shown to influence choice. Interestingly, the DMDs in Tsix lie within CTCF binding sites. Allelic methylation differences occur in gametes and are erased in embryonic stem cells carrying two active Xs. Because the pattern of DNA methylation mirrors events of X-inactivation, we propose that differential methylation of DMDs in Tsix and Xite constitute a primary mark for epigenetic regulation. The discovery of DMDs in CTCF sites draws further parallels between X-inactivation and autosomal imprinting.
Collapse
Affiliation(s)
- Rebecca Maxfield Boumil
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Simches 6.624, 185 Cambridge St., Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
18
|
Braidotti G, Baubec T, Pauler F, Seidl C, Smrzka O, Stricker S, Yotova I, Barlow DP. The Air noncoding RNA: an imprinted cis-silencing transcript. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:55-66. [PMID: 16117633 PMCID: PMC2847179 DOI: 10.1101/sqb.2004.69.55] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- G Braidotti
- AFI, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Huynh KD, Lee JT. A continuity of X-chromosome silence from gamete to zygote. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:103-12. [PMID: 16117638 DOI: 10.1101/sqb.2004.69.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K D Huynh
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
20
|
Abstract
In mammals, sex is determined by differential inheritance of a pair of dimorphic chromosomes: the gene-rich X chromosome and the gene-poor Y chromosome. To balance the unequal X-chromosome dosage between the XX female and XY male, mammals have adopted a unique form of dosage compensation in which one of the two X chromosomes is inactivated in the female. This mechanism involves a complex, highly coordinated sequence of events and is a very different strategy from those used by other organisms, such as the fruitfly and the worm. Why did mammals choose an inactivation mechanism when other, perhaps simpler, means could have been used? Recent data offer a compelling link between ontogeny and phylogeny. Here, we propose that X-chromosome inactivation and imprinting might have evolved from an ancient genome-defence mechanism that silences unpaired DNA.
Collapse
Affiliation(s)
- Khanh D Huynh
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
21
|
Abstract
Recent studies have revealed mechanistic parallels between imprinted X-chromosome inactivation and autosomal imprinting. We suggest that neither mechanism was present in ancestral egg-laying mammals, and that both arose when the evolution of the placenta exerted selective pressure to imprint growth-related genes. We also propose that non-coding RNAs and histone modifications were adopted for the imprinting of growth suppressors on the X chromosome and on autosomes. This provides a unified hypothesis for the evolution of X-chromosome inactivation and imprinting.
Collapse
Affiliation(s)
- Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom.
| | | |
Collapse
|
22
|
Abstract
In mammals, the process of making sperm is marked by inactivation of sex chromosomes. Why and how does this happen? The answer apparently lies in whether a chromosome finds a pairing partner. Similar mechanisms in mold and worms reveal a surprising and recurrent theme throughout evolution.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
23
|
Pugacheva EM, Tiwari VK, Abdullaev Z, Vostrov AA, Flanagan PT, Quitschke WW, Loukinov DI, Ohlsson R, Lobanenkov VV. Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation. Hum Mol Genet 2005; 14:953-65. [PMID: 15731119 DOI: 10.1093/hmg/ddi089] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The choice mechanisms that determine the future inactive X chromosome in somatic cells of female mammals involve the regulated expression of the XIST gene. A familial C(-43)G mutation in the XIST promoter results in skewing of X chromosome inactivation (XCI) towards the inactive X chromosome of heterozygous females, whereas a C(-43)A mutation found primarily in the active X chromosome results in the opposite skewing pattern. Both mutations point to the existence of a factor that might be responsible for the skewed patterns. Here we identify this factor as CTCF, a conserved protein with a 11 Zn-finger (ZF) domain that can mediate multiple sequence-specificity and interactions between DNA-bound CTCF molecules. We show that mouse and human Xist/XIST promoters contain one homologous CTCF-binding sequence with the matching dG-contacts, which in the human XIST include the -43 position within the DNase I footprint of CTCF. While the C(-43)A mutation abrogates CTCF binding, the C(-43)G mutation results in a dramatic increase in CTCF-binding efficiency by altering ZF-usage mode required for recognition of the altered dG-contacts of the mutant site. Thus, the skewing effect of the two -43C mutations correlates with their effects on CTCF binding. Finally, CTCF interacts with the XIST/Xist promoter only in female human and mouse cells. The interpretation that this reflected a preferential interaction with the promoter of the active Xist allele was confirmed in mouse fetal placenta. These observations are in keeping with the possibility that the choice of X chromosome inactivation reflects stabilization of a higher order chromatin conformation impinging on the CTCF-XIST promoter complex.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- CCCTC-Binding Factor
- Cell Nucleus/metabolism
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Chromosomes, Human, X
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyribonuclease I/metabolism
- Dosage Compensation, Genetic
- Family Health
- Female
- Heterozygote
- Humans
- Immunoprecipitation
- Male
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Plasmids/metabolism
- Point Mutation
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Sex Factors
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Twinbrook I Rm. 1417, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jablonka E. The evolution of the peculiarities of mammalian sex chromosomes: an epigenetic view. Bioessays 2005; 26:1327-32. [PMID: 15551267 DOI: 10.1002/bies.20140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In most discussions of the evolution of sex chromosomes, it is presumed that the morphological differences between the X and Y were initiated by genetic changes. An alternative possibility is that, in the early stages, a key role was played by epigenetic modifications of chromatin structure that did not depend directly on genetic changes. Such modifications could have resulted from spontaneous epimutations at a sex-determining locus or, in mammals, from selection in females for the epigenetic silencing of imprinted regions of the paternally derived sex chromosome. Other features of mammalian sex chromosomes that are easier to explain if the epigenetic dimension of chromosome evolution is considered include the relatively large number of X-linked genes associated with human brain development, and the overrepresentation of spermatogenesis genes on the X. Both may be evolutionary consequences of dosage compensation through X-inactivation.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
25
|
Abstract
There are two forms of X chromosome inactivation (XCI) in the laboratory mouse, random XCI in the fetus and imprinted paternal XCI limited to the extraembryonic tissues supporting the fetal life in utero. Imprinted XCI has been studied extensively because it takes place first in embryogenesis and it may hold clues to the mechanism of control of XCI in general and to the evolution of random' XCI. Classical microscopic and biochemical studies of embryos in vivo provide a basis for interpreting the multifaceted information yielded by various inventive approaches and for planning further experiments.
Collapse
Affiliation(s)
- Nobuo Takagi
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
26
|
Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 2004; 117:2491-501. [PMID: 15128874 DOI: 10.1242/jcs.01238] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tri-methylated lysine 20 on histone H4 (Me(3)K20H4) is a marker of constitutive heterochromatin in murine interphase and metaphase cells. Heterochromatin marked by Me(3)K20H4 replicates late during S phase of the cell cycle. Serum starvation increases the number of cells that exhibit high levels of Me(3)K20H4 at constitutive heterochromatin. Me(3)K20H4 is also present at the centromeric heterochromatin of most meiotic chromosomes during spermatogenesis and at the pseudoautosomal region, as well as at some telomeres. It is not present on the XY-body. During murine embryogenesis the maternal pronucleus contains Me(3)K20H4; Me(3)K20H4 is absent from the paternal pronucleus. On Drosophila polytene chromosomes Me(3)K20H4 is present in a 'punctate pattern' at many chromosomal bands, including the chromocenter. In coccids it is present on the facultatively heterochromatinised paternal chromosome set. We also present evidence that Me(3)K20H4 is dependent upon H3-specific Suv(3)9 histone methyltransferase activity, suggesting that there may be 'epigenetic cross-talk' between histones H3 and H4.
Collapse
Affiliation(s)
- Niki Kourmouli
- Nuclear Reprogramming Laboratory, Division of Gene Expression and Development, Roslin Institute, Edinburgh, EH25 9PS, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sleutels F, Tjon G, Ludwig T, Barlow DP. Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J 2003; 22:3696-704. [PMID: 12853484 PMCID: PMC165611 DOI: 10.1093/emboj/cdg341] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Silencing of the paternal allele of three imprinted genes (Igf2r, Slc22a2 and Slc22a3) requires cis expression of the Air RNA that overlaps the promoter of one of them (Igf2r). Air is a non-coding RNA whose mode of action is unknown. We tested the role of the Igf2r promoter and the role of transcriptional overlap between Igf2r and Air in silencing in this cluster. We analyzed imprinted expression in mice in which the Igf2r promoter is replaced by a thymidine kinase promoter that preserves a transcription overlap with Air, and in mice with a deleted Igf2r promoter that lack any transcriptional overlap with Air. Imprinted silencing of Air, Slc22a2 and Slc22a3 is maintained by the replacement promoter and also in the absence of transcriptional overlap with Air. These results exclude a role for the Igf2r promoter and for transcriptional overlap between Igf2r and Air in silencing Air, Slc22a2 and Slc22a3. Although these results do not completely exclude a role for a double-stranded RNA silencing mechanism, they do allow the possibility that the Air RNA has intrinsic cis silencing properties.
Collapse
Affiliation(s)
- Frank Sleutels
- Department of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Lee JT. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Curr Biol 2003; 13:R242-54. [PMID: 12646153 DOI: 10.1016/s0960-9822(03)00162-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In classical Mendelian inheritance, each parent donates a set of chromosomes to its offspring so that maternally and paternally encoded information is expressed equally. The phenomena of X-chromosome inactivation (XCI) and autosomal imprinting in mammals violate this dogma of genetic equality. In XCI, one of the two female X chromosomes is silenced to equalize X-linked gene dosage between XX and XY individuals. In genomic imprinting, parental marks determine which of the embryo's two autosomal alleles will be expressed. Although XCI and imprinting appear distinct, molecular evidence now shows that they share a surprising number of features. Among them are cis-acting control centers, long-distance regulation and differential DNA methylation. Perhaps one of the most intriguing similarities between XCI and imprinting has been their association with noncoding and antisense RNAs. Very recent data also suggest the common involvement of histone modifications and chromatin-associated factors such as CTCF. Collectively, the evidence suggests that XCI and genomic imprinting may have a common origin. Here, I hypothesize that the need for X-linked dosage compensation was a major driving force in the evolution of genomic imprinting in mammals. I propose that imprinting was first fixed on the X chromosome for XCI and subsequently acquired by autosomes.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A, Huang THM. Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem 2003; 88:138-43. [PMID: 12461783 DOI: 10.1002/jcb.10313] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene silencing via promoter CpG island hypermethylation offers tumor cells growth advantages. This epigenetic event is pharmacologically reversible, and uncovering a unique set of methylation-silenced genes in tumor cells can bring a new avenue to cancer treatment. However, high-throughput tools capable of surveying the methylation status of multiple gene promoters are needed for this discovery process. Herein we describe an oligonucleotide-based microarray technique that is both versatile and sensitive in revealing hypermethylation in defined regions of the genome. DNA samples are bisulfite-treated and PCR-amplified to distinguish CpG dinucleotides that are methylated from those that are not. Fluorescently labeled PCR products are hybridized to arrayed oligonucleotides that can discriminate between methylated and unmethylated alleles in regions of interest. Using this technique, two clinical subtypes of non-Hodgkin's lymphomas, mantle cell lymphoma, and grades I/II follicular lymphoma, were further separated based on the differential methylation profiles of several gene promoters. Work is underway in our laboratory to extend the interrogation power of this microarray system in multiple candidate genes. This novel tool, therefore, holds promise to monitor the outcome of various epigenetic therapies on cancer patients.
Collapse
Affiliation(s)
- Huidong Shi
- Department of Pathology and Anatomical Sciences, Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, Missouri 65203, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415:810-3. [PMID: 11845212 DOI: 10.1038/415810a] [Citation(s) in RCA: 781] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In genomic imprinting, one of the two parental alleles of an autosomal gene is silenced epigenetically by a cis-acting mechanism. A bidirectional silencer for a 400-kilobase region that contains three imprinted, maternally expressed protein-coding genes (Igf2r/Slc22a2/Slc22a3) has been shown by targeted deletion to be located in a sequence of 3.7 kilobases, which also contains the promoter for the imprinted, paternally expressed non-coding Air RNA. Expression of Air is correlated with repression of all three genes on the paternal allele; however, Air RNA overlaps just one of these genes in an antisense orientation. Here we show, by inserting a polyadenylation signal that truncates 96% of the RNA transcript, that Air RNA is required for silencing. The truncated Air allele maintains imprinted expression and methylation of the Air promoter, but shows complete loss of silencing of the Igf2r/Slc22a2/Slc22a3 gene cluster on the paternal chromosome. Our results indicate that non-coding RNAs have an active role in genomic imprinting.
Collapse
Affiliation(s)
- Frank Sleutels
- Department of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Birchler JA, Bhadra U, Bhadra MP, Auger DL. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 2001; 234:275-88. [PMID: 11396999 DOI: 10.1006/dbio.2001.0262] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence from a variety of data suggests that regulatory mechanisms in multicellular eukaryotes have evolved in such a manner that the stoichiometric relationship of the components of regulatory complexes affects target gene expression. This type of mechanism sets the level of gene expression and, as a consequence, the phenotypic characteristics. Because many types of regulatory processes exhibit dosage-dependent behavior, they would impact quantitative traits and contribute to their multigenic control in a semidominant fashion. Many dosage-dependent effects would also account for the extensive modulation of gene expression throughout the genome that occurs when chromosomes are added to or subtracted from the karyotype (aneuploidy). Moreover, because the majority of dosage-dependent regulators act negatively, this property can account for the up-regulation of genes in monosomics and hemizygous sex chromosomes to achieve dosage compensation.
Collapse
Affiliation(s)
- J A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138; e-mail:
| |
Collapse
|