1
|
Saeinasab M, Matin MM, Rassouli FB, Bahrami AR. Blastema cells derived from New Zealand white rabbit's pinna carry stemness properties as shown by differentiation into insulin producing, neural, and osteogenic lineages representing three embryonic germ layers. Cytotechnology 2016; 68:497-507. [PMID: 25371011 PMCID: PMC4846631 DOI: 10.1007/s10616-014-9802-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022] Open
Abstract
Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh B Rassouli
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Watanabe H, Hoang VT, Mättner R, Holstein TW. Immortality and the base of multicellular life: Lessons from cnidarian stem cells. Semin Cell Dev Biol 2009; 20:1114-25. [PMID: 19761866 DOI: 10.1016/j.semcdb.2009.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 02/01/2023]
Abstract
Cnidarians are phylogenetically basal members of the animal kingdom (>600 million years old). Together with plants they share some remarkable features that cannot be found in higher animals. Cnidarians and plants exhibit an almost unlimited regeneration capacity and immortality. Immortality can be ascribed to the asexual mode of reproduction that requires cells with an unlimited self-renewal capacity. We propose that the basic properties of animal stem cells are tightly linked to this archaic mode of reproduction. The cnidarian stem cells can give rise to a number of differentiated cell types including neuronal and germ cells. The genomes of Hydra and Nematostella, representatives of two major cnidarian classes indicate a surprising complexity of both genomes, which is in the range of vertebrates. Recent work indicates that highly conserved signalling pathways control Hydra stem cell differentiation. Furthermore, the availability of genomic resources and novel technologies provide approaches to analyse these cells in vivo. Studies of stem cells in cnidarians will therefore open important insights into the basic mechanisms of stem cell biology. Their critical phylogenetic position at the base of the metazoan branch in the tree of life makes them an important link in unravelling the common mechanisms of stem cell biology between animals and plants.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Heidelberg University, Institute of Zoology, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
3
|
Fraune S, Abe Y, Bosch TCG. Disturbing epithelial homeostasis in the metazoanHydraleads to drastic changes in associated microbiota. Environ Microbiol 2009; 11:2361-9. [DOI: 10.1111/j.1462-2920.2009.01963.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Colasanti M, Mazzone V, Mancinelli L, Leone S, Venturini G. Involvement of nitric oxide in the head regeneration of Hydra vulgaris. Nitric Oxide 2009; 21:164-70. [PMID: 19635580 DOI: 10.1016/j.niox.2009.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Recent data have shown that a functional NO-cGMP signalling system plays an important role during development and seems to be operative early during the differentiation of embryonic stem cells. The intriguing possibility exists that this role can be evolutionarily conserved between vertebrates and invertebrates. In this paper, we have analyzed the effect of NO-cGMP pathway on the regeneration process in Hydra vulgaris, the most primitive invertebrate possessing a nervous system. Our results indicate that NO production increased during Hydra regeneration. The NOS inhibitor L-NAME reduced the regenerative process and the same effect was obtained by treatment with either the specific guanylate cyclase inhibitor ODQ or the protein kinase G (PKG) inhibitor KT-5823. In contrast, the regeneration process was increased by treating decapitated Hydra with the NO donor NOC-18. Furthermore, we found that cell proliferation was also increased by treating decapitated Hydra with the NO donor NOC-18 and reduced by treatment with the NOS inhibitor L-NAME. Our results strongly suggest that the NO-cGMP-PKG pathway is involved in the control of the proliferative-differentiative patterns of developing and regenerating structures in cnidarians as well as bilaterians.
Collapse
Affiliation(s)
- Marco Colasanti
- Department of Biology, University of Rome "ROMA TRE", Viale Marconi 446, 00146 Rome, Italy.
| | | | | | | | | |
Collapse
|
5
|
Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 2009; 69:235-54. [PMID: 19170043 DOI: 10.1002/dneu.20698] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nematostella vectensis, an anthozoan cnidarian, whose genome has been sequenced and is suitable for developmental and ecological studies, has a complex neural morphology that is modified during development from the larval to adult form. N. vectensis' nervous system is a diffuse nerve net with both ectodermal sensory and effector cells and endodermal multipolar ganglion cells. This nerve net consists of several distinct neural territories along the oral-aboral axis including the pharyngeal and oral nerve rings, and the larval apical tuft. These neuralized regions correspond to expression of conserved bilaterian neural developmental regulatory genes including homeodomain transcription factors and NCAMs. Early neurons and stem cell populations identified with NvMsi, NvELAV, and NvGCM, indicate that neural differentiation occurs throughout the animal and initiates prior to the conclusion of gastrulation. Neural specification in N. vectensis appears to occur through an independent mechanism from that in the classical cnidarian model Hydra.
Collapse
Affiliation(s)
- Heather Q Marlow
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Hydra are remarkable because they are immortal. Much of immortality can be ascribed to the asexual mode of reproduction by budding, which requires a tissue consisting of stem cells with continuous self-renewal capacity. Emerging novel technologies and the availability of genomic resources enable for the first time to analyse these cells in vivo. Stem cell differentiation in Hydra is governed through the coordinated actions of conserved signaling pathways. Studies of stem cells in Hydra, therefore, promise critical insights of general relevance into stem cell biology including cellular senescence, lineage programming and reprogramming, the role of extrinsic signals in fate determination and tissue homeostasis, and the evolutionary origin of these cells. With these new facts as a backdrop, this review traces the history of studying stem cells in Hydra and offers a view of what the future may hold.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
7
|
Anton-Erxleben F, Thomas A, Wittlieb J, Fraune S, Bosch TCG. Plasticity of epithelial cell shape in response to upstream signals: a whole-organism study using transgenic Hydra. ZOOLOGY 2009; 112:185-94. [PMID: 19201587 DOI: 10.1016/j.zool.2008.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/25/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Multicellular organisms consist of a variety of cells of distinctive morphology, with the cell shapes often reproduced with astonishing accuracy between individuals and across species. The morphology of cells varies with tissues, and cell shape changes are of profound importance in many occasions of morphogenesis. To elucidate the mechanisms of cell shape determination and regulation is therefore an important issue. One of the simplest multicellular organisms is the freshwater polyp Hydra. Although much is known about patterning in this early branching metazoan, there is currently little understanding of how cells in Hydra regulate their shape in response to upstream signals. We previously reported generation of transgenic Hydra to trace cells and to study cell behavior in vivo in an animal at the basis of animal evolution. Here, we use a novel transgenic line which expresses enhanced green fluorescent protein (eGFP) specifically in the ectodermal epithelial cells to analyze the structure and shape of epithelial cells as they are recruited into specific regions along the body column and respond to upstream signals such as components of the canonical Wnt signaling pathway. As a general theme, in contrast to epithelial cells in more complex animals, ectodermal epithelial cells in Hydra are capable of drastic changes in structure, shape, and cell contact along the body column. The remarkable phenotypic plasticity of epithelial cells in response to positional signals allows Hydra to build its body with only a limited number of different cell types.
Collapse
Affiliation(s)
- Friederike Anton-Erxleben
- Zoological Institute, Christian-Albrechts-University, Kiel, Olshausenstr. 40, Am Botanischen Garten 9, D-24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
8
|
Hemmrich G, Bosch TC. Compagen, a comparative genomics platform for early branching metazoan animals, reveals early origins of genes regulating stem-cell differentiation. Bioessays 2008; 30:1010-8. [DOI: 10.1002/bies.20813] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
|
10
|
Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TCG. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss. Genome Biol 2007; 8:R59. [PMID: 17437634 PMCID: PMC1896004 DOI: 10.1186/gb-2007-8-4-r59] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/22/2006] [Accepted: 04/16/2007] [Indexed: 12/04/2022] Open
Abstract
Analysis of genomic resources available for cnidarians revealed that several key components of the vertebrate innate immune repertoire are present in representatives of the basal cnidarian class Anthozoa, but are missing in Hydra, a member of the class Hydrozoa, indicating ancient origins for many components of the innate immune system. Background Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest - it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. Results To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-κB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Conclusion Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.
Collapse
Affiliation(s)
- David J Miller
- ARC Centre of Excellence in Coral Reef Studies and Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia
| | - Georg Hemmrich
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Eldon E Ball
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - David C Hayward
- ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Konstantin Khalturin
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| | - Noriko Funayama
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Thomas CG Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausenstrasse, 24098 Kiel, Germany
| |
Collapse
|
11
|
Siebert S, Anton-Erxleben F, Bosch TCG. Cell type complexity in the basal metazoan Hydra is maintained by both stem cell based mechanisms and transdifferentiation. Dev Biol 2007; 313:13-24. [PMID: 18029279 DOI: 10.1016/j.ydbio.2007.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/03/2007] [Accepted: 09/06/2007] [Indexed: 11/25/2022]
Abstract
Understanding the mechanisms controlling the stability of the differentiated cell state is a fundamental problem in biology. To characterize the critical regulatory events that control stem cell behavior and cell plasticity in vivo in an organism at the base of animal evolution, we have generated transgenic Hydra lines [Wittlieb, J., Khalturin, K., Lohmann, J., Anton-Erxleben, F., Bosch, T.C.G., 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 6208-6211] which express eGFP in one of the differentiated cell types. Here we present a novel line which expresses eGFP specifically in zymogen gland cells. These cells are derivatives of the interstitial stem cell lineage and have previously been found to express two Dickkopf related genes [Augustin, R., Franke, A., Khalturin, K., Kiko, R., Siebert, S. Hemmrich, G., Bosch, T.C.G., 2006. Dickkopf related genes are components of the positional value gradient in Hydra. Dev. Biol. 296 (1), 62-70]. In the present study we have generated transgenic Hydra in which eGFP expression is under control of the promoter of one of them, HyDkk1/2/4 C. Transgenic Hydra recapitulate faithfully the previously described graded activation of HyDkk1/2/4 C expression along the body column, indicating that the promoter contains all elements essential for spatial and temporal control mechanisms. By in vivo monitoring of eGFP+ gland cells, we provide direct evidence for continuous transdifferentiation of zymogen cells into granular mucous cells in the head region. We also show that in this tissue a subpopulation of mucous gland cells directly derives from interstitial stem cells. These findings indicate that both stem cell-based mechanisms and transdifferentiation are involved in normal development and maintenance of cell type complexity in Hydra. The results demonstrate a remarkable plasticity in the differentiation capacity of cells in an organism which diverged before the origin of bilaterian animals.
Collapse
Affiliation(s)
- Stefan Siebert
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | |
Collapse
|
12
|
Khalturin K, Anton-Erxleben F, Milde S, Plötz C, Wittlieb J, Hemmrich G, Bosch TCG. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Dev Biol 2007; 309:32-44. [PMID: 17659272 DOI: 10.1016/j.ydbio.2007.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/31/2022]
Abstract
Little is known about stem cells in organisms at the beginning of evolution. To characterize the regulatory events that control stem cells in the basal metazoan Hydra, we have generated transgenics which express eGFP selectively in the interstitial stem cell lineage. Using them we visualized stem cell and precursor migration in real-time in the context of the native environment. We demonstrate that interstitial cells respond to signals from the cellular environment, and that Wnt and Notch pathways are key players in this process. Furthermore, by analyzing polyps which overexpress the Polycomb protein HyEED in their interstitial cells, we provide in vivo evidence for a role of chromatin modification in terminal differentiation. These findings for the first time uncover insights into signalling pathways involved in stem cell differentiation in the Bilaterian ancestor; they demonstrate that mechanisms controlling stem cell behaviour are based on components which are conserved throughout the animal kingdom.
Collapse
Affiliation(s)
- Konstantin Khalturin
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|