1
|
Borkosky SS, Whitley C, Kopp-Schneider A, zur Hausen H, deVilliers EM. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLoS One 2012; 7:e32160. [PMID: 22384166 PMCID: PMC3285200 DOI: 10.1371/journal.pone.0032160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022] Open
Abstract
Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis.
Collapse
Affiliation(s)
- Silvia S. Borkosky
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Corinna Whitley
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Harald zur Hausen
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ethel-Michele deVilliers
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
2
|
Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Recombination in eukaryotic single stranded DNA viruses. Viruses 2011; 3:1699-738. [PMID: 21994803 PMCID: PMC3187698 DOI: 10.3390/v3091699] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 12/23/2022] Open
Abstract
Although single stranded (ss) DNA viruses that infect humans and their domesticated animals do not generally cause major diseases, the arthropod borne ssDNA viruses of plants do, and as a result seriously constrain food production in most temperate regions of the world. Besides the well known plant and animal-infecting ssDNA viruses, it has recently become apparent through metagenomic surveys of ssDNA molecules that there also exist large numbers of other diverse ssDNA viruses within almost all terrestrial and aquatic environments. The host ranges of these viruses probably span the tree of life and they are likely to be important components of global ecosystems. Various lines of evidence suggest that a pivotal evolutionary process during the generation of this global ssDNA virus diversity has probably been genetic recombination. High rates of homologous recombination, non-homologous recombination and genome component reassortment are known to occur within and between various different ssDNA virus species and we look here at the various roles that these different types of recombination may play, both in the day-to-day biology, and in the longer term evolution, of these viruses. We specifically focus on the ecological, biochemical and selective factors underlying patterns of genetic exchange detectable amongst the ssDNA viruses and discuss how these should all be considered when assessing the adaptive value of recombination during ssDNA virus evolution.
Collapse
Affiliation(s)
- Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa; E-Mail:
| | - Philippe Biagini
- UMR CNRS 6578 Anthropologie Bioculturelle, Equipe “Emergence et co-évolution virale”, Etablissement Français du Sang Alpes-Méditerranée, Université de la Méditerranée, 27 Bd. Jean Moulin, 13005 Marseille, France; E-Mail:
| | - Pierre Lefeuvre
- CIRAD, UMR 53 PVBMT CIRAD-Université de la Réunion, Pôle de Protection des Plantes, Ligne Paradis, 97410, Saint Pierre, La Réunion, France; E-Mail:
| | - Michael Golden
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa; E-Mail:
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, TA A-54/K, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France; E-Mail:
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; E-Mail:
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
3
|
The diversity of torque teno viruses: in vitro replication leads to the formation of additional replication-competent subviral molecules. J Virol 2011; 85:7284-95. [PMID: 21593173 DOI: 10.1128/jvi.02472-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The family Anelloviridae comprises torque teno viruses (TTVs) diverse in genome structure and organization. The isolation of a large number of TTV genomes (TTV Heidelberg [TTV-HD]) of 26 TTV types is reported. Several isolates from the same type indicate sequence variation within open reading frame 1 (ORF1), resulting in considerably modified open reading frames. We demonstrate in vitro replication of 12 full-length genomes of TTV-HD in 293TT cells. Propagation of virus was achieved by several rounds of infections using supernatant and frozen whole cells of initially infected cells. Replication of virus was measured by PCR amplification and transcription analyses. Subgenomic molecules (μTTV), arising early during propagation and ranging in size from 401 to 913 bases, were cloned and characterized. Propagation of these μTTV in in vitro cultures was demonstrated in the absence of full-length genomes.
Collapse
|
4
|
Ng TFF, Wheeler E, Greig D, Waltzek TB, Gulland F, Breitbart M. Metagenomic identification of a novel anellovirus in Pacific harbor seal (Phoca vitulina richardsii) lung samples and its detection in samples from multiple years. J Gen Virol 2011; 92:1318-1323. [PMID: 21402596 DOI: 10.1099/vir.0.029678-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate viral pathogens potentially involved in a mortality event of 21 Pacific harbor seals (Phoca vitulina richardsii) in California in 2000, viral metagenomics was performed directly on lung samples from five individuals. Metagenomics revealed a novel seal anellovirus (SealAV), which clusters phylogenetically with anelloviruses from California sea lions and domestic cats. Using specific PCR, SealAV was identified in lung tissue from two of five animals involved in the 2000 mortality event, as well as one of 20 harbor seal samples examined post-mortem in 2008. The identification of SealAV in multiple years demonstrates that this virus is persistent in the harbor seal population. SealAV is the second anellovirus reported in the lungs of pinnipeds, suggesting that anellovirus infections may be common amongst marine mammals and that more research is needed to understand the roles of these viruses in marine mammal health and disease.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- University of South Florida College of Marine Science, 140 7th Avenue South, St Petersburg, FL 33701, USA
| | | | - Denise Greig
- The Marine Mammal Center, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Thomas B Waltzek
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Frances Gulland
- The Marine Mammal Center, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Mya Breitbart
- University of South Florida College of Marine Science, 140 7th Avenue South, St Petersburg, FL 33701, USA
| |
Collapse
|