1
|
Swartz HM, Flood AB. Re-examining What the Results of "a Measurement of Oxygen Level in Tissues" Really Mean. Mol Imaging Biol 2024; 26:391-402. [PMID: 38177616 DOI: 10.1007/s11307-023-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Within this special issue, many eminent investigators report on measurements of oxygen (O2) levels in tissues. Given the complexities of spatial and temporal heterogeneities of O2 in tissues and its many sources, this commentary draws attention to what such measurements do and do not actually assess regarding O2 levels in tissues. Given this limitation, it also discusses how these results can be used most effectively. To provide a convenient mechanism to discuss these issues more fully, this analysis focuses on measurements using EPR oximetry, but these considerations apply to all other techniques. The nature of the delivery of O2 to tissues and the mechanisms by which O2 is consumed necessarily result in very different levels of O2 within the volume of each voxel of a measurement. Better spatial resolution cannot fully resolve the problem because the variations include O2 gradients within each cell. Improved resolution of the time-dependent variation in O2 is also very challenging because O2 levels within tissues can have fluctuations of O2 levels in the range of milliseconds, while most methods require longer times to acquire the data from each voxel. Based on these issues, we argue that the values obtained inevitably are complex aggregates of averages of O2 levels across space and time in the tissue. These complexities arise from the complex physiology of tissues and are compounded by the limitations of the technique and its ability to acquire data. However, one often can obtain very meaningful and useful results if these complexities and limitations are taken into account. We illustrate this, using results obtained with in vivo EPR oximetry, especially utilizing its capacity to make repeated measurements to follow changes in O2 levels that occur with interventions and/or over time.
Collapse
Affiliation(s)
- Harold M Swartz
- Dept. of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| | - Ann Barry Flood
- Dept. of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Clin-EPR, LLC, Lyme, NH, USA.
| |
Collapse
|
2
|
Ebadi Sharafabad B, Abdoli A, Panahi M, Abdolmohammadi Khiav L, Jamur P, Abedi Jafari F, Dilmaghani A. Anti-tumor Effects of Cisplatin Synergist in Combined Treatment with Clostridium novyi-NT Spores Against Hypoxic Microenvironments in a Mouse Model of Cervical Cancer Caused by TC-1 Cell Line. Adv Pharm Bull 2023; 13:817-826. [PMID: 38022809 PMCID: PMC10676560 DOI: 10.34172/apb.2023.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Despite the development of anti-human papillomavirus (HPV) vaccines, cervical cancer is still a common disease in women, especially in developing countries. The presence of a hypoxic microenvironment causes traditional treatments to fail. In this study, we presented a combined treatment method based on the chemotherapeutic agent cisplatin and Clostridium novyi-NT spores to treat normoxic and hypoxic areas of the tumor. Methods TC-1 Cell line capable of expressing HPV-16 E6/7 oncoproteins was subcutaneously transplanted into female 6-8 week old C57/BL6 mice. The tumor-bearing mice were randomly divided into four groups and treated with different methods after selecting a control group. Group 1: Control without treatment (0.1 mL sterile PBS intratumorally), Group: C. novyi-NT (107 C. novyi-NT). Group 3: Receives cisplatin intraperitoneally (10 mg/kg). Fourth group: Intratumoral administration of C. novyi-NT spores + intraperitoneal cisplatin. Western blot analysis was used to examine the effects of anti-hypoxia treatment and expression of hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins. Results The results clearly showed that combined treatment based on C. novyi-NT and cisplatin significantly reduced the expression of HIF-1 alpha and VEGF proteins compared to cisplatin alone. At the same time, the amount of necrosis of tumor cells in the combined treatment increased significantly compared to the single treatment and the control. At the same time, the mitotic count decreased significantly. Conclusion Our research showed that developing a combined treatment method based on C. novyi-NT and cisplatin against HPV-positive cervical cancer could overcome the treatment limitations caused by the existence of hypoxic areas of the tumor.
Collapse
Affiliation(s)
- Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Mohammad Panahi
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Jamur
- Department of Hepatitis and HIV, Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Fatemeh Abedi Jafari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azita Dilmaghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Vaupel P, Piazena H. Strong correlation between specific heat capacity and water content in human tissues suggests preferred heat deposition in malignant tumors upon electromagnetic irradiation. Int J Hyperthermia 2022; 39:987-997. [DOI: 10.1080/02656736.2022.2067596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Peter Vaupel
- Department of Radiation Oncology, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helmut Piazena
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Ma Y, Cui D, Wang L, Wang Y, Yang F, Pan H, Gong L, Zhang M, Xiong X, Zhao Y. P90 ribosomal S6 kinase confers cancer cell survival by mediating checkpoint kinase 1 degradation in response to glucose stress. Cancer Sci 2021; 113:132-144. [PMID: 34668620 PMCID: PMC8748233 DOI: 10.1111/cas.15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022] Open
Abstract
In solid tumors, cancer cells have devised multiple approaches to survival and proliferate in response to glucose starvation that is often observed in solid tumor microenvironments. However, the precise mechanisms are far less known. Herein, we report that glucose deprivation activates 90‐kDa ribosomal S6 kinase (p90 RSK), a highly conserved Ser/Thr kinase, and activated p90 RSK promotes cancer cell survival. Mechanistically, activated p90 RSK by glucose deprivation phosphorylates checkpoint kinase 1 (CHK1), a key transducer in checkpoint signaling pathways, at Ser280 and triggers CHK1 ubiquitination mediated by SCFβ‐TrCP ubiquitin ligase and proteasomal degradation, subsequently suppressing cancer cell apoptosis induced by glucose deprivation. Importantly, we identified an inverse correlation between p90 RSK activity and CHK1 levels within the solid tumor mass, with lower levels of CHK1 and higher activity of p90 RSK in the center of the tumor where low glucose concentrations are often observed. Thus, our study indicates that p90 RSK promotes CHK1 phosphorylation at Ser280 and its subsequent degradation, which allows cancer cells to escape from checkpoint signals under the stress of glucose deprivation, leading to cell survival and thus contributing to tumorigenesis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Linchen Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Pan
- Department of Lung Transplantation, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyuan Gong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Minrun Zhang
- Laboratory Animal Center of Zhejiang University, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Swartz HM, Flood AB, Schaner PE, Halpern H, Williams BB, Pogue BW, Gallez B, Vaupel P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol Rep 2020; 8:e14541. [PMID: 32786045 PMCID: PMC7422807 DOI: 10.14814/phy2.14541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Ann Barry Flood
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Howard Halpern
- Department Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Benjamin B Williams
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
- Department of Medicine, Section of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Bernard Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Peter Vaupel
- Department Radiation Oncology, University Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Center Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Soni S, Sinha RK. Tumor blood perfusion-based requirement of nanoparticle dose-loadings for plasmonic photothermal therapy. Nanomedicine (Lond) 2019; 14:1841-1855. [DOI: 10.2217/nnm-2018-0494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Blood perfusion-based requirement of nanoparticle dose-loadings is computed for plasmonic photothermal therapy of a tumor. Methods: Thermal damage is quantified through coupled multiphysics approach to specify nanoparticle loadings. Results: For low blood perfusion, the nanoparticle loading of 1 mm at 0.02 mg/ml or 3 mm at 0.2 mg/ml concentration may be chosen depending upon the desired tumor margins. For high blood perfusion, nanoparticle loading of 3 mm at 0.2 mg/ml concentration with irradiation parameters of 1 W/cm2 and 200 s seems desirable. Conclusion: Lower nanoparticle loadings within deeper periphery of tumor damage the deeper healthy tissue. If tumor margin is not to be ablated, then higher nanoparticle loadings should be opted instead of higher irradiation duration.
Collapse
Affiliation(s)
- Sanjeev Soni
- Biomedical Instrumentation Division, Central Scientific Instruments Organisation (CSIR), Sector-30C, Chandigarh-160030, India
| | - Ravindra K Sinha
- Central Scientific Instruments Organisation (CSIR), Sector-30C, Chandigarh-160030, India
- TIFAC-CORE, Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi-110042, India
| |
Collapse
|
8
|
PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-Positive Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20092188. [PMID: 31058807 PMCID: PMC6539191 DOI: 10.3390/ijms20092188] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus (HPV)-induced cancers will remain a significant clinical challenge for decades. Thus, the development of novel treatment strategies is urgently required, which should benefit from improving our understanding of the mechanisms of HPV-induced cell transformation. This should also include analyses of hypoxic tumor cells, which represent a major problem for cancer therapy. Recent evidence indicates that the PI3K/AKT/mTOR network plays a key role for the virus/host cell crosstalk in both normoxic and hypoxic HPV-positive cancer cells. In normoxic cells, the efficacy of the senescence induction upon experimental E6/E7 repression depends on active mTORC1 signaling. Under hypoxia, however, HPV-positive cancer cells can evade senescence due to hypoxic impairment of mTORC1 signaling, albeit the cells strongly downregulate E6/E7. Hypoxic repression of E6/E7 is mediated by the AKT kinase, which is activated under hypoxia by its canonical upstream regulators mTORC2 and PI3K. This review highlights our current knowledge about the oxygen-dependent crosstalk of the PI3K/AKT/mTOR signaling circuit with the HPV oncogenes and the phenotypic state of the host cell. Moreover, since the PI3K/AKT/mTOR pathway is considered to be a promising target for anticancer therapy, we discuss clinical implications for the treatment of HPV-positive cervical and head and neck squamous cell carcinomas.
Collapse
|
9
|
Erb-Eigner K, Asbach P, Ro SR, Haas M, Bertelmann E, Pietsch H, Schwenke C, Taupitz M, Denecke T, Hamm B, Lawaczeck R. DCE-MR imaging of orbital lesions: diagnostic performance of the tumor flow residence time τ calculated by a multi-compartmental pharmacokinetic tumor model based on individual factors. Acta Radiol 2019; 60:643-652. [PMID: 30114927 DOI: 10.1177/0284185118795324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differentiating benign from malignant orbital lesions by imaging and clinical presentation can be challenging. PURPOSE To differentiate benign from malignant orbital masses using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on tumor flow residence time τ calculated with the aid of a pharmacokinetic tumor model. MATERIAL AND METHODS Sixty patients with orbital masses were investigated by 3-T MRI including dynamic sequences. The signal intensity-time curve after i.v. contrast medium administration within lesions was approximated by Gd-concentration profiles on the basis of model calculations where the tumor is embedded in a whole-body kinetic model. One output of the model was tumor flow residence time τ, defined as the ratio of the tumor volume and the tumor blood flow rate. Receiver operating characteristic (ROC) curves were used to analyze the diagnostic performance of τ. The results were compared with those of Ktrans, kep, ve, iAUC, and ADC. RESULTS Thirty-one benign and 29 malignant orbital masses were identified (reference standard: histopathology, clinical characteristics). Mean τ was significantly longer for benign masses (94 ± 48 s) than for malignant masses (21 ± 19 s, P < 0.001). ROC analysis revealed the highest area under the curve (AUC = 0.94) for τ in orbital masses compared to standard methods. CONCLUSION Tumor flow residence times τ of benign and malignant orbital masses are valuable in the diagnostic work-up of orbital tumors. Measures of diagnostic accuracy were superior for τ compared to ADC, Ktrans, ve, and iAUC.
Collapse
Affiliation(s)
| | - Patrick Asbach
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sa-Ra Ro
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Haas
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart Bertelmann
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | | | - Matthias Taupitz
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Timm Denecke
- Department of Radiology, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- MR and CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | | |
Collapse
|
10
|
Hindel S, Papanastasiou G, Wust P, Maaß M, Söhner A, Lüdemann L. Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents. Magn Reson Med 2017; 79:3154-3162. [DOI: 10.1002/mrm.26983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| | - Giorgos Papanastasiou
- Centre for Cardiovascular Science, Clinical Research Imaging Centre, University of Edinburgh; Edinburgh UK
| | - Peter Wust
- Department of Radiation Oncology; Charité Universitätsmedizin Berlin; Berlin Germany
| | - Marc Maaß
- Department of General and Visceral Surgery at Evangelical Hospital Wesel; Wesel North Rhine-Westphalia Germany
| | - Anika Söhner
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| | - Lutz Lüdemann
- Department of Radiotherapy; Medical Physics Section, University Hospital Essen; Essen North Rhine-Westphalia Germany
| |
Collapse
|
11
|
Induction of dormancy in hypoxic human papillomavirus-positive cancer cells. Proc Natl Acad Sci U S A 2017; 114:E990-E998. [PMID: 28115701 DOI: 10.1073/pnas.1615758114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) are closely linked to major human malignancies, including cervical and head and neck cancers. It is widely assumed that HPV-positive cancer cells are under selection pressure to continuously express the viral E6/E7 oncogenes, that their intracellular p53 levels are reconstituted on E6/E7 repression, and that E6/E7 inhibition phenotypically results in cellular senescence. Here we show that hypoxic conditions, as are often found in subregions of cervical and head and neck cancers, enable HPV-positive cancer cells to escape from these regulatory principles: E6/E7 is efficiently repressed, yet, p53 levels do not increase. Moreover, E6/E7 repression under hypoxia does not result in cellular senescence, owing to hypoxia-associated impaired mechanistic target of rapamycin (mTOR) signaling via the inhibitory REDD1/TSC2 axis. Instead, a reversible growth arrest is induced that can be overcome by reoxygenation. Impairment of mTOR signaling also interfered with the senescence response of hypoxic HPV-positive cancer cells toward prosenescent chemotherapy in vitro. Collectively, these findings indicate that hypoxic HPV-positive cancer cells can induce a reversible state of dormancy, with decreased viral antigen synthesis and increased therapeutic resistance, and may serve as reservoirs for tumor recurrence on reoxygenation.
Collapse
|
12
|
Singh S, Repaka R. Temperature-controlled radiofrequency ablation of different tissues using two-compartment models. Int J Hyperthermia 2016; 33:122-134. [DOI: 10.1080/02656736.2016.1223890] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sundeep Singh
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
13
|
Horsman MR, Vaupel P. Pathophysiological Basis for the Formation of the Tumor Microenvironment. Front Oncol 2016; 6:66. [PMID: 27148472 PMCID: PMC4828447 DOI: 10.3389/fonc.2016.00066] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
Poor microenvironmental conditions are a characteristic feature of solid tumors. Such conditions occur because the tumor vascular supply, which develops from the normal host vasculature by the process of angiogenesis, is generally inadequate in meeting the oxygen and nutrient demands of the growing tumor mass. Regions of low oxygenation (hypoxia) is believed to be the most critical deficiency, since it has been well documented to play a significant role in influencing the response to conventional radiation and chemotherapy treatments, as well as influencing malignant progression in terms of aggressive growth and recurrence of the primary tumor and its metastatic spread. As a result, significant emphasis has been placed on finding clinically applicable approaches to identify those tumors that contain hypoxia and realistic methods to target this hypoxia. However, most studies consider hypoxia as a single entity, yet we now know that it is multifactorial. Furthermore, hypoxia is often associated with other microenvironmental parameters, such as elevated interstitial fluid pressure, glycolysis, low pH, and reduced bioenergetic status, and these can also influence the effects of hypoxia. Here, we review the various aspects of hypoxia, but also discuss the role of the other microenvironmental parameters associated with hypoxia.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| | - Peter Vaupel
- Department of Radiooncology and Radiotherapy, Klinikum rechts der Isar, Technische Universität München (TUM) , Munich , Germany
| |
Collapse
|
14
|
Soni S, Tyagi H, Taylor RA, Kumar A. The influence of tumour blood perfusion variability on thermal damage during nanoparticle-assisted thermal therapy. Int J Hyperthermia 2015; 31:615-25. [DOI: 10.3109/02656736.2015.1040470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
15
|
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21:1516-54. [PMID: 24512032 PMCID: PMC4159937 DOI: 10.1089/ars.2013.5378] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor hypoxia is a well-established biological phenomenon that affects the curability of solid tumors, regardless of treatment modality. Especially for head and neck cancer patients, tumor hypoxia is linked to poor patient outcomes. Given the biological problems associated with tumor hypoxia, the goal for clinicians has been to identify moderately to severely hypoxic tumors for differential treatment strategies. The "gold standard" for detecting and characterizing of tumor hypoxia are the invasive polarographic electrodes. Several less invasive hypoxia assessment techniques have also shown promise for hypoxia assessment. The widespread incorporation of hypoxia information in clinical tumor assessment is severely impeded by several factors, including regulatory hurdles and unclear correlation with potential treatment decisions. There is now an acute need for approved diagnostic technologies for determining the hypoxia status of cancer lesions, as it would enable clinical development of personalized, hypoxia-based therapies, which will ultimately improve outcomes. A number of different techniques for assessing tumor hypoxia have evolved to replace polarographic pO2 measurements for assessing tumor hypoxia. Several of these modalities, either individually or in combination with other imaging techniques, provide functional and physiological information of tumor hypoxia that can significantly improve the course of treatment. The assessment of tumor hypoxia will be valuable to radiation oncologists, surgeons, and biotechnology and pharmaceutical companies who are engaged in developing hypoxia-based therapies or treatment strategies.
Collapse
Affiliation(s)
- Joseph C Walsh
- 1 Siemens Molecular Imaging, Inc. , Culver City, California
| | | | | | | | | | | |
Collapse
|
16
|
Bernsen MR, Vaissier PEB, Van Holen R, Booij J, Beekman FJ, de Jong M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S36-49. [PMID: 24895751 PMCID: PMC4003405 DOI: 10.1007/s00259-013-2685-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Abstract
Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.
Collapse
Affiliation(s)
- Monique R. Bernsen
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter E. B. Vaissier
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Roel Van Holen
- ELIS Department, MEDISIP, Ghent University, iMinds, Ghent, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Freek J. Beekman
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
- MILabs B.V., Utrecht, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Vaupel PW, Kelleher DK. Blood flow and associated pathophysiology of uterine cervix cancers: Characterisation and relevance for localised hyperthermia. Int J Hyperthermia 2012; 28:518-27. [DOI: 10.3109/02656736.2012.699134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences. Strahlenther Onkol 2012; 188:616-27. [PMID: 22454045 DOI: 10.1007/s00066-012-0085-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Many tumors contain hypoxic regions. Hypoxia, in turn, is known to increase aggressiveness and to be associated with treatment resistance. The two most frequently described and investigated subtypes of tumor hypoxia are acute and chronic. These two subtypes can lead to completely different hypoxia-related responses within the tumor, which could have a direct effect on tumor development and response to treatment. In order to accurately assess the specific biological consequences, it is important to understand which time frames best define acute and chronic hypoxia. MATERIALS AND METHODS This article provides an overview of the kinetics of in vitro and in vivo acute and chronic tumor hypoxia. Special attention was paid to differentiate between methods to detect spontaneous in vivo hypoxia and to describe the biological effects of experimental in vitro and in vivo acute and chronic tumor hypoxia. RESULTS AND CONCLUSIONS There are large variations in reported spontaneous fluctuations in acute hypoxia that are dependent on the cell lines investigated and the detection method used. In addition to differing hypoxia levels, exposure times used to induce in vitro and in vivo experimental acute and chronic hypoxia range from 30 min to several weeks with no clear boundaries separating the two. Evaluation of the biological consequences of each hypoxia subtype revealed a general trend that acute hypoxia leads to a more aggressive phenotype. Importantly, more information on the occurrence of acute and chronic hypoxia in human tumors is needed to help our understanding of the clinical consequences.
Collapse
Affiliation(s)
- C Bayer
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | | |
Collapse
|
19
|
Blood flow and oxygenation status of gastrointestinal tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 737:133-8. [PMID: 22259093 DOI: 10.1007/978-1-4614-1566-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Bobko AA, Eubank TD, Voorhees JL, Efimova OV, Kirilyuk IA, Petryakov S, Trofimiov DG, Marsh CB, Zweier JL, Grigor'ev IA, Samouilov A, Khramtsov VV. In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magn Reson Med 2011; 67:1827-36. [PMID: 22113626 DOI: 10.1002/mrm.23196] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/22/2011] [Accepted: 08/03/2011] [Indexed: 01/27/2023]
Abstract
Approach for in vivo real-time assessment of tumor tissue extracellular pH (pH(e)), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pH(e) is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pH(e) by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pH(e) mapping was performed using recently proposed variable frequency proton-electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pH(e) and a difference of about 0.4 pH units between average pH(e) values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pH(e), extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maleki T, Ning Cao, Seung Hyun Song, Chinghai Kao, Song-Chu Ko, Ziaie B. An Ultrasonically Powered Implantable Micro-Oxygen Generator (IMOG). IEEE Trans Biomed Eng 2011; 58:3104-11. [DOI: 10.1109/tbme.2011.2163634] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Vaupel P, Hoeckel M, Mayer A. Oxygenation status of urogenital tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 701:101-6. [PMID: 21445775 DOI: 10.1007/978-1-4419-7756-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In malignant urogenital tumors, tissue oxygenation is compromised and very heterogeneous,with steep and fluctuating spatio-temporal oxygen gradients signaling a complex instability in tumor oxygenation (complex "4D-heterogeneity"). Tumor hypoxia is highly dynamic, and rapidly changing pO(2) gradients may be key factors driving hypoxia-dependent adaptive processes leading to malignant progression. The grand median oxygen tension in malignant urogenital tumors is 7-11 mmHg. In contrast, benign leiomyomas of the uterus are severely, but uniformly, hypoxic with only shallow oxygen gradients ("static hypoxia"). In these benign tumors, the median pO(2) is 1 mmHg and signs of hypoxia-driven processes are missing.
Collapse
Affiliation(s)
- Peter Vaupel
- Department of Radiooncology and Radiotherapy, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | |
Collapse
|
23
|
Shi K, Souvatzoglou M, Astner ST, Vaupel P, Nüsslin F, Wilkens JJ, Ziegler SI. Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors. J Nucl Med 2010; 51:1386-94. [PMID: 20720045 DOI: 10.2967/jnumed.109.074336] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Several kinetic models have been proposed to assess the underlying oxygenation status behind hypoxia tracer uptake and have shown advantages, compared with static analysis, in discriminating hypoxic regions. However, the quantitative assessment of mathematic models that take into consideration clinical applications and their biologic nature is still challenging. We performed a feasibility study to assess hypoxia kinetic models using voxelwise cross-analysis between the uptake of the perfusion tracer (15)O-H(2)O and the hypoxia tracer (18)F-fluoroazomycin arabinoside ((18)F-FAZA). METHODS Five patients with advanced head and neck cancer were included. For each patient, dynamic sequences of (15)O-H(2)O for 5 min and (18)F-FAZA for 60 min were acquired consecutively after injections of approximately 1 GBq and 300 MBq of each tracer, respectively. The compartment model, Thorwarth model, Patlak plot, Logan plot, and Cho model were applied to model the process of tracer transport and accumulation under hypoxic conditions. The standard 1-tissue-compartment model was used to compute a perfusion map for each patient. The hypoxia kinetic models were based on the assumption of a positive correlation between tracer delivery and perfusion and a negative (inverse) correlation between tracer accumulation (hypoxia) and perfusion. RESULTS Positive correlations between tracer delivery and perfusion were observed for the Thorwarth and Cho models in all patients and for the reversible and irreversible 2-compartment models in 4 patients. Negative correlations between tracer accumulation and perfusion were observed for the reversible 2-compartment model in all patients and for the irreversible 2-compartment model and Cho model in 4 patients. When applied to normal skeletal muscle, the smallest correlation variance over all 5 patients was observed for the reversible 2-compartment model. CONCLUSION Hypoxia kinetic modeling delivers different information from static measurements. Different models generate different results for the same patient, and they even can lead to opposite physiologic interpretations. On the basis of our assessment of physiologic precision and robustness, the reversible 2-compartment model corresponds better to the expectations of our assumptions than the other investigated models.
Collapse
Affiliation(s)
- Kuangyu Shi
- Department of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Vaupel PW, Kelleher DK. Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int J Hyperthermia 2010; 26:211-23. [PMID: 20345270 DOI: 10.3109/02656731003596259] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumour blood flow before and during clinically relevant mild hyperthermia exhibits pronounced heterogeneity. Flow changes upon heating are not predictable and are both spatially and temporally highly variable. Flow increases may result in improved heat dissipation to the extent that therapeutically relevant tissue temperatures may not be achieved. This holds especially true for tumours or tumour regions in which flow rates are substantially higher than in the surrounding normal tissues. Changes in tumour oxygenation tend to reflect alterations in blood flow upon hyperthermia. An initial improvement in the oxygenation status, followed by a return to baseline levels (or even a drop to below baseline at high thermal doses) has been reported for some tumours, whereas a predictable and universal occurrence of sustained increases in O(2) tensions upon mild hyperthermia is questionable and still needs to be verified in the clinical setting. Clarification of the pathogenetic mechanisms behind possible sustained increases is mandatory. High-dose hyperthermia leads to a decrease in the extracellular and intracellular pH and a deterioration of the energy status, both of which are known to be parameters capable of acting as direct sensitisers and thus pivotal factors in hyperthermia treatment. The role of the tumour microcirculatory function, hypoxia, acidosis and energy status is complex and is further complicated by a pronounced heterogeneity. These latter aspects require additional critical evaluation in clinically relevant tumour models in order for their impact on the response to heat to be clarified.
Collapse
Affiliation(s)
- Peter W Vaupel
- Department of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical University, Munich, Germany
| | | |
Collapse
|