1
|
Zhang P, Yao L, Shan G, Chen Y. A model of radiation-induced temporomandibular joint damage in mice. Int J Radiat Biol 2022; 98:1-10. [PMID: 35467478 DOI: 10.1080/09553002.2022.2069298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE A small animal radiation research platform (SARRP) equipped with a miniature beam system, an image-guided positioning system, and a dose planning system was used to develop and evaluate a mouse model of radiation-induced temporomandibular damage. METHODS Left jaw disks of adult male C57BL/6 mice and C3H mice were targeted using the SARRP for image-guided irradiation. The total radiation dose was 75 Gy. Experiment 1 (Scoping study): Mice in the C57BL/6 mouse test and control groups were sacrificed at 1, 3, 6, 9, 12, 15, and 18 weeks after irradiation, whereas mice in the C3H test and control groups were sacrificed at 1, 3, 6, 9, and 12 weeks after irradiation. Experiment 2 (Full -scale validation study): Mice in the C57BL/6 mouse test and control groups were sacrificed at 1, 3 and 6 weeks after irradiation. Histopathological analysis of the temporomandibular skeletal muscle in each group was performed using hematoxylin and eosin (H&E) and Masson staining; the temporal mandibular bone was examined through H&E staining. RESULTS SARRP delivered the rated dose to the temporomandibular joints of C57BL/6 and C3H mice. C3H and C57BL/6 mice in the test group showed different degrees of osteocytic necrosis and osteoporosis at different time points. H&E staining of skeletal muscle tissue showed slight fibrosis in the C57BL/6 test at 3 and 6 weeks time point. CONCLUSION We established a model of radiation-induced damage in the temporomandibular joint of C57BL/6 mice and demonstrated that the observed physiological and histological changes correspond to radiation damage observed in humans. Furthermore, the SARRP can deliver precise radiation doses.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology Physics, Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lejing Yao
- Department of Radiology Physics, Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Guoping Shan
- Department of Radiology Physics, Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuanyuan Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology Oncology, Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Kufeld M, Escobar H, Marg A, Pasemann D, Budach V, Spuler S. Localized irradiation of mouse legs using an image-guided robotic linear accelerator. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:156. [PMID: 28480192 DOI: 10.21037/atm.2017.03.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. METHODS After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. RESULTS All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. CONCLUSIONS Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.
Collapse
Affiliation(s)
- Markus Kufeld
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Escobar
- Max Delbrück Center for Molecular Medicine, Mobile DNA group, Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Diana Pasemann
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
3
|
Bache ST, Juang T, Belley MD, Koontz BF, Adamovics J, Yoshizumi TT, Kirsch DG, Oldham M. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters. Med Phys 2015; 42:846-55. [PMID: 25652497 DOI: 10.1118/1.4905489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1-15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm(3)) optical computed tomography (optical-CT) dose read-out. METHODS Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180° continuous arc at 225 kVp with a 20 × 10 mm field size. Dose response was evaluated using both the Presage/optical-CT 3D dosimetry system described above, and independent verification in select planes using EBT2 radiochromic film placed inside rodent-morphic dosimeters that had been sectioned in half. RESULTS Rodent-morphic 3D dosimeters were successfully produced from Presage radiochromic material by utilizing 3D printed molds of rat CT contours. The dosimeters were found to be compatible with optical-CT dose readout in high-resolution 3D (0.5 mm isotropic voxels) with minimal artifacts or noise. Cone-beam CT image guidance was possible with these dosimeters due to sufficient contrast between high-Z spinal inserts and tissue equivalent Presage material (CNR ∼10 on CBCT images). Dose at isocenter measured with optical-CT was found to agree with nanoscintillator measurement to within 2.8%. Maximum dose in line profiles taken through Presage and film dose slices agreed within 3%, with FWHM measurements through each profile found to agree within 2%. CONCLUSIONS This work demonstrates the feasibility of using 3D printing technology to make anatomically accurate Presage rodent-morphic dosimeters incorporating spinal-mimicking inserts. High quality optical-CT 3D dosimetry is feasible on these dosimeters, despite the irregular surfaces and implanted inserts. The ability to measure dose distributions in anatomically accurate phantoms represents a powerful useful additional verification tool for preclinical microSBRT.
Collapse
Affiliation(s)
- Steven T Bache
- Duke University Medical Physics Graduate Program, Durham, North Carolina 27705
| | - Titania Juang
- Duke University Medical Physics Graduate Program, Durham, North Carolina 27705
| | - Matthew D Belley
- Duke University Medical Physics Graduate Program, Durham, North Carolina 27705
| | | | | | | | - David G Kirsch
- Duke University Medical Center, Durham, North Carolina 27710
| | - Mark Oldham
- Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
4
|
Jermoumi M, Korideck H, Bhagwat M, Zygmanski P, Makrigiogos GM, Berbeco RI, Cormack RC, Ngwa W. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP). Phys Med 2015; 31:529-35. [PMID: 25964129 DOI: 10.1016/j.ejmp.2015.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. RESULTS Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. CONCLUSIONS The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.
Collapse
Affiliation(s)
- M Jermoumi
- Department of Applied Physics, Medical Physics Program, University of Massachusetts at Lowell, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - H Korideck
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - M Bhagwat
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - P Zygmanski
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - G M Makrigiogos
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - R I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - R C Cormack
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - W Ngwa
- Department of Applied Physics, Medical Physics Program, University of Massachusetts at Lowell, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Jeong J, Chen Q, Febo R, Yang J, Pham H, Xiong JP, Zanzonico PB, Deasy JO, Humm JL, Mageras GS. Adaptation, Commissioning, and Evaluation of a 3D Treatment Planning System for High-Resolution Small-Animal Irradiation. Technol Cancer Res Treat 2015; 15:460-71. [PMID: 25948321 DOI: 10.1177/1533034615584522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 01/24/2023] Open
Abstract
Although spatially precise systems are now available for small-animal irradiations, there are currently limited software tools available for treatment planning for such irradiations. We report on the adaptation, commissioning, and evaluation of a 3-dimensional treatment planning system for use with a small-animal irradiation system. The 225-kV X-ray beam of the X-RAD 225Cx microirradiator (Precision X-Ray) was commissioned using both ion-chamber and radiochromic film for 10 different collimators ranging in field size from 1 mm in diameter to 40 × 40 mm(2) A clinical 3-dimensional treatment planning system (Metropolis) developed at our institution was adapted to small-animal irradiation by making it compatible with the dimensions of mice and rats, modeling the microirradiator beam orientations and collimators, and incorporating the measured beam data for dose calculation. Dose calculations in Metropolis were verified by comparison with measurements in phantoms. Treatment plans for irradiation of a tumor-bearing mouse were generated with both the Metropolis and the vendor-supplied software. The calculated beam-on times and the plan evaluation tools were compared. The dose rate at the central axis ranges from 74 to 365 cGy/min depending on the collimator size. Doses calculated with Metropolis agreed with phantom measurements within 3% for all collimators. The beam-on times calculated by Metropolis and the vendor-supplied software agreed within 1% at the isocenter. The modified 3-dimensional treatment planning system provides better visualization of the relationship between the X-ray beams and the small-animal anatomy as well as more complete dosimetric information on target tissues and organs at risk. It thereby enhances the potential of image-guided microirradiator systems for evaluation of dose-response relationships and for preclinical experimentation generally.
Collapse
Affiliation(s)
- Jeho Jeong
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Qing Chen
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Robert Febo
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jie Yang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hai Pham
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jian-Ping Xiong
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gig S Mageras
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Stewart JMP, Lindsay PE, Jaffray DA. Two-dimensional inverse planning and delivery with a preclinical image guided microirradiator. Med Phys 2013; 40:101709. [DOI: 10.1118/1.4819935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Eslami S, Yang Y, Wong J, Patterson MS, Iordachita I. An Integrated X-Ray/Optical Tomography System for Pre-clinical Radiation Research. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8668:866830. [PMID: 25745539 DOI: 10.1117/12.2008060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target's Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multi-wavelength BL tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0-90° (for the standalone system). Camera and CBCT calibration are accomplished.
Collapse
Affiliation(s)
- S Eslami
- ERC - Computer-Integrated Surgical Systems and Technology (CISST), Johns Hopkins University, Baltimore, MD USA
| | - Y Yang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M S Patterson
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | - I Iordachita
- ERC - Computer-Integrated Surgical Systems and Technology (CISST), Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
8
|
Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 2012; 15:700-2. [PMID: 22446882 PMCID: PMC3380241 DOI: 10.1038/nn.3079] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/01/2012] [Indexed: 01/02/2023]
Abstract
Adult hypothalamic neurogenesis has been recently reported, but the cell of origin and function of these newborn neurons are unknown. We utilize genetic fate mapping to show that median eminence tanycytes generate newborn neurons; blocking this neurogenesis alters weight and metabolic activity in adult mice. These findings describe a previously unreported neurogenic niche within the mammalian hypothalamus with important implications for metabolism.
Collapse
Affiliation(s)
- Daniel A Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ngwa W, Korideck H, Chin LM, Makrigiorgos GM, Berbeco RI. MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP). Radiat Res 2011; 176:816-20. [PMID: 21962005 DOI: 10.1667/rr2536.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice. Surgically implanted metal oxide semiconductor field effect transistors (MOSFET) dosimeters were employed for the dose assessment. The results reveal differences between the calculated and measured dose of -3.5 to 0.5%, -5.2 to -0.7%, -3.9 to 0.5%, -5.9 to 2.5%, -5.5 to 0.5%, and -4.3 to 0% for the left kidney, liver, pancreas, prostate, left lung, and brain, respectively. Overall, the findings show less than 6% difference between the delivered and calculated dose, without tissue heterogeneity corrections. These results provide a useful assessment of the need for tissue heterogeneity corrections in SARRP dose calculations for clinically relevant tumor model sites.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
10
|
Medina LA, Herrera-Penilla BI, Castro-Morales MA, García-López P, Jurado R, Pérez-Cárdenas E, Chanona-Vilchis J, Brandan ME. Use of an orthovoltage X-ray treatment unit as a radiation research system in a small-animal cancer model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:57. [PMID: 18957119 PMCID: PMC2586013 DOI: 10.1186/1756-9966-27-57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
Background We explore the use of a clinical orthovoltage X-ray treatment unit as a small-animal radiation therapy system in a tumoral model of cervical cancer. Methods Nude mice were subcutaneously inoculated with 5 × 106 HeLa cells in both lower limbs. When tumor volume approximated 200 mm3 treatment was initiated. Animals received four 2 mg/kg intraperitoneal cycles (1/week) of cisplatin and/or 6.25 mg/kg of gemcitabine, concomitant with radiotherapy. Tumors were exposed to 2.5 Gy/day nominal surface doses (20 days) of 150 kV X-rays. Lead collimators with circular apertures (0.5 to 1.5 cm diameter) were manufactured and mounted on the applicator cone to restrict the X-ray beam onto tumors. X-ray penetration and conformality were evaluated by measuring dose at the surface and behind the tumor lobe by using HS GafChromic film. Relative changes in tumor volume (RTV) and a clonogenic assay were used to evaluate the therapeutic response of the tumor, and relative weight loss was used to assess toxicity of the treatments. Results No measurable dose was delivered outside of the collimator apertures. The analysis suggests that dose inhomogeneities in the tumor reach up to ± 11.5% around the mean tumor dose value, which was estimated as 2.2 Gy/day. Evaluation of the RTV showed a significant reduction of the tumor volume as consequence of the chemoradiotherapy treatment; results also show that toxicity was well tolerated by the animals. Conclusion Results and procedures described in the present work have shown the usefulness and convenience of the orthovoltage X-ray system for animal model radiotherapy protocols.
Collapse
Affiliation(s)
- Luis-Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México D,F, 04510, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wong J, Armour E, Kazanzides P, Iordachita I, Tryggestad E, Deng H, Matinfar M, Kennedy C, Liu Z, Chan T, Gray O, Verhaegen F, McNutt T, Ford E, DeWeese TL. High-resolution, small animal radiation research platform with x-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 2008; 71:1591-9. [PMID: 18640502 DOI: 10.1016/j.ijrobp.2008.04.025] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To demonstrate the computed tomography, conformal irradiation, and treatment planning capabilities of a small animal radiation research platform (SARRP). METHODS AND MATERIALS The SARRP uses a dual-focal spot, constant voltage X-ray source mounted on a gantry with a source-to-isocenter distance of 35 cm. Gantry rotation is limited to 120 degrees from vertical. X-rays of 80-100 kVp from the smaller 0.4-mm focal spot are used for imaging. Both 0.4-mm and 3.0-mm focal spots operate at 225 kVp for irradiation. Robotic translate/rotate stages are used to position the animal. Cone-beam computed tomography is achieved by rotating the horizontal animal between the stationary X-ray source and a flat-panel detector. The radiation beams range from 0.5 mm in diameter to 60 x 60 mm(2). Dosimetry is measured with radiochromic films. Monte Carlo dose calculations are used for treatment planning. The combination of gantry and robotic stage motions facilitate conformal irradiation. RESULTS The SARRP spans 3 ft x 4 ft x 6 ft (width x length x height). Depending on the filtration, the isocenter dose outputs at a 1-cm depth in water were 22-375 cGy/min from the smallest to the largest radiation fields. The 20-80% dose falloff spanned 0.16 mm. Cone-beam computed tomography with 0.6 x 0.6 x 0.6 mm(3) voxel resolution was acquired with a dose of <1 cGy. Treatment planning was performed at submillimeter resolution. CONCLUSION The capability of the SARRP to deliver highly focal beams to multiple animal model systems provides new research opportunities that more realistically bridge laboratory research and clinical translation.
Collapse
Affiliation(s)
- John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|