1
|
Müller-Vahl KR, Pisarenko A, Ringlstetter R, Cimpianu CL, Fremer C, Weidinger E, Jenz EB, Musil R, Brunnauer A, Großhennig A. The Effect of Nabiximols on Driving Ability in Adults with Chronic Tic Disorders: Results of a Substudy Analysis of the Double-Blind, Randomized, Placebo-Controlled CANNA-TICS Trial. Cannabis Cannabinoid Res 2024; 9:1349-1359. [PMID: 38265476 DOI: 10.1089/can.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Background: The multicenter, randomized, double-blind, parallel-group, phase IIIb CANNA-TICS (CANNAbinoids in the treatment of TICS) trial showed clear trends for improvement of tics, depression, and quality of life with nabiximols versus placebo in adult patients with Gilles de la Tourette syndrome and other chronic tic disorders. Although in general nabiximols was well tolerated, it is unclear whether treatment using this cannabis extract influences driving skills in patients with chronic tic disorders. Methods: Here we report results of the "Fitness to Drive" substudy of the CANNA-TICS trial. The key endpoint was fitness to drive as a binary criterion with a computerized assessment at baseline and after 9 weeks of stable treatment (week 13) with nabiximols or placebo. A patient was considered unfit to drive according to the German Federal Highway Research Institute guidelines. Results: In the substudy, a total of 64 patients (76.6% men, mean±standard deviation of age: 36.8±13.9) were recruited at two study sites. The number of patients who were fit to drive increased from 24 (55.8%) at baseline to 28 (71.8%) at week 13 among 43 patients treated with nabiximols, and decreased from 14 (66.7%) to 10 (52.6%) among 21 patients who received placebo. The risk difference (nabiximols - placebo) was 0.17 (95% confidence interval=-0.08 to 0.43) in favor of nabiximols. Specifically, only 2 of 24 (8.3%) patients in the nabiximols, but 4 of 14 (28.6%) patients in the placebo group changed for the worse from fit (at baseline) to unfit (at week 13) to drive, whereas 8 of 19 (42.1%) patients in the nabiximols, and only 2 of 7 (28.6%) patients in the placebo group improved from unfit to fit. Conclusion: Treatment with nabiximols does not impair skills relevant to driving in those patients with tic disorders who were fit to drive at baseline and even improved fitness to drive in a subset of patients who were unfit to drive before start of treatment. EudraCT number: 2016-000564-42.
Collapse
Affiliation(s)
- Kirsten R Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Anna Pisarenko
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | - Camelia-Lucia Cimpianu
- Department of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carolin Fremer
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Elif Weidinger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eva Beate Jenz
- Institute of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Brunnauer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
- Clinical Center for Psychiatry, Psychotherapy, Psychosomatic Medicine, Geriatrics and Neurology, kbo-Inn-Salzach-Klinikum, Wasserburg/Inn, Germany
| | - Anika Großhennig
- Institute of Biostatistics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Rawji V, Modi S, Latorre A, Rocchi L, Hockey L, Bhatia K, Joyce E, Rothwell JC, Jahanshahi M. Impaired automatic but intact volitional inhibition in primary tic disorders. Brain 2020; 143:906-919. [PMID: 32125364 PMCID: PMC7089661 DOI: 10.1093/brain/awaa024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
The defining character of tics is that they can be transiently suppressed by volitional effort of will, and at a behavioural level this has led to the concept that tics result from a failure of inhibition. However, this logic conflates the mechanism responsible for the production of tics with that used in suppressing them. Volitional inhibition of motor output could be increased to prevent the tic from reaching the threshold for expression, although this has been extensively investigated with conflicting results. Alternatively, automatic inhibition could prevent the initial excitation of the striatal tic focus-a hypothesis we have previously introduced. To reconcile these competing hypotheses, we examined different types of motor inhibition in a group of 19 patients with primary tic disorders and 15 healthy volunteers. We probed proactive and reactive inhibition using the conditional stop-signal task, and applied transcranial magnetic stimulation to the motor cortex, to assess movement preparation and execution. We assessed automatic motor inhibition with the masked priming task. We found that volitional movement preparation, execution and inhibition (proactive and reactive) were not impaired in tic disorders. We speculate that these mechanisms are recruited during volitional tic suppression, and that they prevent expression of the tic by inhibiting the nascent excitation released by the tic generator. In contrast, automatic inhibition was abnormal/impaired in patients with tic disorders. In the masked priming task, positive and negative compatibility effects were found for healthy controls, whereas patients with tics exhibited strong positive compatibility effects, but no negative compatibility effect indicative of impaired automatic inhibition. Patients also made more errors on the masked priming task than healthy control subjects and the types of errors were consistent with impaired automatic inhibition. Errors associated with impaired automatic inhibition were positively correlated with tic severity. We conclude that voluntary movement preparation/generation and volitional inhibition are normal in tic disorders, whereas automatic inhibition is impaired-a deficit that correlated with tic severity and thus may constitute a potential mechanism by which tics are generated.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Sachin Modi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Leanne Hockey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
3
|
Fernández-Ruiz J, Moreno-Martet M, Rodríguez-Cueto C, Palomo-Garo C, Gómez-Cañas M, Valdeolivas S, Guaza C, Romero J, Guzmán M, Mechoulam R, Ramos JA. Prospects for cannabinoid therapies in basal ganglia disorders. Br J Pharmacol 2012; 163:1365-78. [PMID: 21545415 DOI: 10.1111/j.1476-5381.2011.01365.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ(9) -tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB(1) and CB(2) receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB(2) receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB(2) receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB(2) receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB(2) receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB(2) receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|