1
|
Song Q, Zhao F, Hou L, Miao M. Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates. THE ISME JOURNAL 2024; 18:wrae117. [PMID: 38916437 PMCID: PMC11253213 DOI: 10.1093/ismejo/wrae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
As unicellular predators, ciliates engage in close associations with diverse microbes, laying the foundation for the establishment of endosymbiosis. Originally heterotrophic, ciliates demonstrate the ability to acquire phototrophy by phagocytizing unicellular algae or by sequestering algal plastids. This adaptation enables them to gain photosynthate and develop resistance to unfavorable environmental conditions. The integration of acquired phototrophy with intrinsic phagotrophy results in a trophic mode known as mixotrophy. Additionally, ciliates can harbor thousands of bacteria in various intracellular regions, including the cytoplasm and nucleus, exhibiting species specificity. Under prolonged and specific selective pressure within hosts, bacterial endosymbionts evolve unique lifestyles and undergo particular reductions in metabolic activities. Investigating the research advancements in various endosymbiotic cases within ciliates will contribute to elucidate patterns in cellular interaction and unravel the evolutionary origins of complex traits.
Collapse
Affiliation(s)
- Qi Song
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Fangqing Zhao
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 Xiangshan Road, Hangzhou 310024, China
| | - Lina Hou
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Miao Miao
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| |
Collapse
|
2
|
Fujishima M, Kodama Y. Mechanisms for Establishing Primary and Secondary Endosymbiosis in Paramecium. J Eukaryot Microbiol 2022; 69:e12901. [PMID: 35243727 DOI: 10.1111/jeu.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary (eukaryote and procaryote) and secondary (eukaryote and eukaryote) endosymbiosis are driving forces in eukaryotic cell evolution. These phenomena are still contributing to acquire new cell structures and functions. To understand mechanisms for establishment of each endosymbiosis, experiments that can induce endosymbiosis synchronously by mixing symbionts isolated from symbiont-bearing host cells and symbiont-free host cells are indispensable. Recent progress on endosymbiosis using Paramecium and their endonuclear symbiotic bacteria Holospora or symbiotic green alga Chlorella has been remarkable, and providing excellent opportunities for elucidating host-symbiont interactions. These organisms are now becoming model organisms to know the mechanisms for establishing primary and secondary endosymbiosis. Based on experiments of many researchers, we introduce, how these endosymbionts escape from the host lysosomal fusion, how they migrate in the host cytoplasm to localize specific locations within the host, how their species specificity and strain specificity of the host cells are controlled, how their life cycles are controlled, how they escape from the host cell to infect more young host cell, how they affect to the host viability and to gene expression, what kind of substances are needed in these phenomena, and what changes had been induced in the symbiont and the host genomes.
Collapse
Affiliation(s)
- Masahiro Fujishima
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Yuuki Kodama
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Nishikawatsu-cho 1060, Matsue, 690-8504, Japan
| |
Collapse
|
3
|
Sorek M, Schnytzer Y, Waldman Ben-Asher H, Caspi VC, Chen CS, Miller DJ, Levy O. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. MICROBIOME 2018; 6:83. [PMID: 29739445 PMCID: PMC5941691 DOI: 10.1186/s40168-018-0465-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/20/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana. RESULTS The results showed that whereas circatidal (approx. 12-h) cycles of activity and gene expression predominated in aposymbiotic morphs, circadian (approx. 24-h) patterns were the more common in symbiotic morphs, where the expression of a significant number of genes shifted from a 12- to 24-h rhythm. The behavioural experiments on symbiotic A. diaphana displayed diel (24-h) rhythmicity in body and tentacle contraction under the light/dark cycles, whereas aposymbiotic morphs showed approximately 12-h (circatidal) rhythmicity. Reinfection experiments represent an important step in understanding the hierarchy of endogenous clocks in symbiotic associations, where the aposymbiotic Aiptasia morphs returned to a 24-h behavioural rhythm after repopulation with algae. CONCLUSION Whilst some modification of host metabolism is to be expected, the extent to which the presence of the algae modified host endogenous behavioural and transcriptional rhythms implies that it is the symbionts that influence the pace. Our results clearly demonstrate the importance of the endosymbiotic algae in determining the timing and the duration of the extension and contraction of the body and tentacles and temporal gene expression.
Collapse
Affiliation(s)
- Michal Sorek
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Yisrael Schnytzer
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Vered Chalifa Caspi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung Taiwan, Republic of China
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell Biology, James Cook University, Townsville, 4811 Australia
| | - Oren Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| |
Collapse
|
4
|
Minaeva E, Ermilova E. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria. PROTOPLASMA 2017; 254:1769-1776. [PMID: 28074287 DOI: 10.1007/s00709-016-1073-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
The unicellular green alga Chlorella variabilis NC64A is an endosymbiont of the ciliate Paramecium bursaria. The host's control, including the transfer of biochemical substrates from P. bursaria to C. variabilis, is involved in symbiotic relationships. C. variabilis NC64A that had been re-infected to P. bursaria for more than 1 year and isolated from the host showed higher chlorophyll levels compared to those in free-living cells. Unlike the host, the expression of C. variabilis NC64A heat shock 70 kDa protein was independent of establishment of endosymbiosis. In symbiotic cells, the levels of PII signal transduction protein (CvPII) that coordinate the central C/N anabolic metabolism were slightly higher than those in free-living cells. Furthermore, the environmental cues (light and host food bacteria availability) affected the abundance of CvPII, suggesting that synthesis of the protein was influenced by the host. Moreover, arginine concentrations in the symbiotic algae of P. bursaria were also controlled by the host's nutritional conditions. Together, our results imply that signal substrates and/or products of metabolism in host cells might act as messengers mediating the regulation of key events in symbiont cells.
Collapse
Affiliation(s)
- Ekaterina Minaeva
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia
| | - Elena Ermilova
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia.
| |
Collapse
|
5
|
Dohra H, Fujishima M, Suzuki H. Analysis of amino acid and codon usage in Paramecium bursaria. FEBS Lett 2015; 589:3113-8. [PMID: 26341535 DOI: 10.1016/j.febslet.2015.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023]
Abstract
The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis.
Collapse
Affiliation(s)
- Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Department of Biological Science, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masahiro Fujishima
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan; National Bio-Resource Project of Japan Agency for Medical Research and Development, Japan
| | - Haruo Suzuki
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan.
| |
Collapse
|
6
|
Kodama Y, Fujishima M. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria. FEMS Microbiol Ecol 2014; 90:946-55. [PMID: 25348325 DOI: 10.1111/1574-6941.12448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/07/2014] [Accepted: 10/19/2014] [Indexed: 01/27/2023] Open
Abstract
Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes.
Collapse
Affiliation(s)
- Yuuki Kodama
- Department of Biological Science, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | | |
Collapse
|
7
|
Kodama Y, Suzuki H, Dohra H, Sugii M, Kitazume T, Yamaguchi K, Shigenobu S, Fujishima M. Comparison of gene expression of Paramecium bursaria with and without Chlorella variabilis symbionts. BMC Genomics 2014; 15:183. [PMID: 24612690 PMCID: PMC4029085 DOI: 10.1186/1471-2164-15-183] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/03/2014] [Indexed: 11/14/2022] Open
Abstract
Background The ciliate Paramecium bursaria harbors several hundred cells of the green-alga Chlorella sp. in their cytoplasm. Irrespective of the mutual relation between P. bursaria and the symbiotic algae, both cells retain the ability to grow without the partner. They can easily reestablish endosymbiosis when put in contact with each other. Consequently, P. bursaria is an excellent model for studying cell–cell interaction and the evolution of eukaryotic cells through secondary endosymbiosis between different protists. Despite the importance of this organism, no genomic resources have been identified for P. bursaria to date. This investigation compared gene expressions through RNA-Seq analysis and de novo transcriptome assembly of symbiont-free and symbiont-bearing host cells. Results To expedite the process of gene discovery related to the endosymbiosis, we have undertaken Illumina deep sequencing of mRNAs prepared from symbiont-bearing and symbiont-free P. bursaria cells. We assembled the reads de novo to build the transcriptome. Sequencing using Illumina HiSeq2000 platform yielded 232.3 million paired-end sequence reads. Clean reads filtered from the raw reads were assembled into 68,175 contig sequences. Of these, 10,557 representative sequences were retained after removing Chlorella sequences and lowly expressed sequences. Nearly 90% of these transcript sequences were annotated by similarity search against protein databases. We identified differentially expressed genes in the symbiont-bearing P. bursaria cells relative to the symbiont-free cells, including heat shock 70 kDa protein and glutathione S-transferase. Conclusions This is the first reported comprehensive sequence resource of Paramecium – Chlorella endosymbiosis. Results provide some keys for the elucidation of secondary endosymbiosis in P. bursaria. We identified P. bursaria genes that are differentially expressed in symbiont-bearing and symbiont-free conditions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-183) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Masahiro Fujishima
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan.
| |
Collapse
|
8
|
Kodama Y, Fujishima M. Cell division and density of symbioticChlorella variabilisof the ciliateParamecium bursariais controlled by the host's nutritional conditions during early infection process. Environ Microbiol 2012; 14:2800-11. [DOI: 10.1111/j.1462-2920.2012.02793.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|