1
|
Khatoon H, Penz Penz K, Banerjee S, Redwanur Rahman M, Mahmud Minhaz T, Islam Z, Ara Mukta F, Nayma Z, Sultana R, Islam Amira K. Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. BIORESOURCE TECHNOLOGY 2021; 338:125529. [PMID: 34265592 DOI: 10.1016/j.biortech.2021.125529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Removal of nitrogenous and phosphorus compounds from aquaculture wastewater by green microalgae (Tetraselmis sp.) was investigated using a novel method of algal cell immobilization. Immobilized microalgae removed nitrogenous and phosphorous compounds efficiently from aquaculture wastewater. Results showed that Tetraselmis beads reduced significantly (p < 0.05) the total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous concentration (0.08; 0.10 and 0.17 mg/L, respectively) from the initial concentration of 7.7, 3.1 and 2.0 mg/L respectively within 48 h compared to other treatments. Removal rate of total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were 99.2, 99.2 and 94.3% respectively, for the artificial wastewater within 24 h. For the shrimp pond wastewater, total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were reduced 98.9, 97.7 and 91.1% respectively within 48 h. It is concluded that Tetraselmis sp. beads is an effective means to reduce nitrogen and phosphorus levels in aquaculture wastewater.
Collapse
Affiliation(s)
- Helena Khatoon
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Kwan Penz Penz
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Sanjoy Banerjee
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Mohammad Redwanur Rahman
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Tashrif Mahmud Minhaz
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Zahidul Islam
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Fardous Ara Mukta
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Zannatul Nayma
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Razia Sultana
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Kafia Islam Amira
- Department of Aquaculture, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Bangladesh
| |
Collapse
|
3
|
Privman V, Domanskyi S, Luz RAS, Guz N, Glasser ML, Katz E. Diffusion of Oligonucleotides from within Iron-Cross-Linked, Polyelectrolyte-Modified Alginate Beads: A Model System for Drug Release. Chemphyschem 2016; 17:976-84. [PMID: 26762598 DOI: 10.1002/cphc.201501186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/24/2022]
Abstract
An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe(3+) -cross-linked and polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, that is, the absence of a surface-layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well-defined component in drug-release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.
Collapse
Affiliation(s)
- Vladimir Privman
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA.
| | - Sergii Domanskyi
- Department of Physics, Clarkson University, Potsdam, NY, 13676, USA
| | - Roberto A S Luz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA
| | | | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13676, USA.
| |
Collapse
|
8
|
Machado AHE, Lundberg D, Ribeiro AJ, Veiga FJ, Miguel MG, Lindman B, Olsson U. Encapsulation of DNA in macroscopic and nanosized calcium alginate gel particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15926-15935. [PMID: 24283412 DOI: 10.1021/la4032927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calcium alginate beads, which are biodegradable and biocompatible, have been widely employed as delivery matrices for biomacromolecules. In the present work, the feasibility of encapsulation of DNA (which is used as a model biomacromolecule) in calcium alginate nanobeads (sub-200 nm size), prepared using a recently developed protocol based on the phase inversion temperature (PIT) emulsification method [Machado et al. Langmuir 2012, 28, 4131-4141], was assessed. The properties of the nanobeads were compared to those of the corresponding macroscopic (millimeter sized) calcium alginate beads. It was found that DNA, representing a relatively stiff and highly charged polyanion (thus like-charged to alginate), could be efficiently encapsulated in both nanosized and macroscopic beads, with encapsulation yields in the range of 77-99%. Complete release of DNA from the beads could be accomplished on dissolution of the gel by addition of a calcium-chelating agent. Importantly, the DNA was not denatured or fragmented during the preparation and collection of the nanobeads, which are good indicators of the mildness of the preparation protocol used. The calcium alginate nanobeads prepared by the herein utilized protocol thus show good potential to be used as carriers of sensitive biomacromolecules.
Collapse
Affiliation(s)
- Alexandra H E Machado
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Machado AHE, Lundberg D, Ribeiro AJ, Veiga FJ, Lindman B, Miguel MG, Olsson U. Preparation of calcium alginate nanoparticles using water-in-oil (W/O) nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4131-41. [PMID: 22296569 DOI: 10.1021/la204944j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A procedure for the preparation of calcium alginate nanoparticles in the aqueous phase of water-in-oil (W/O) nanoemulsions was developed. The emulsions were produced from mixtures of the nonionic surfactant tetraethylene glycol monododecyl ether (C(12)E(4)), decane, and aqueous solutions of up to 2 wt % sodium alginate by means of the phase inversion temperature (PIT) emulsification method. This method allows the preparation of finely dispersed emulsions without a large input of mechanical energy. With alginate concentrations of 1-2 wt % in the aqueous phase, emulsions showed good stability against Ostwald ripening and narrow, monomodal distributions of droplets with radii <100 nm. Gelation of the alginate was induced by the addition of aqueous CaCl(2) to the emulsions under stirring, and particles formed were collected using a simple procedure based on extraction of the surfactant on addition of excess oil. The final particles were characterized using cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). They were found to be essentially spherical with a homogeneous interior, and their size was similar to that of the initial emulsion droplets. The herein presented "low-energy" method for preparation of biocompatible nanoparticles has the potential to be used in various applications, e.g., for the encapsulation of sensitive biomacromolecules.
Collapse
Affiliation(s)
- Alexandra H E Machado
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
11
|
de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y. CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS(1). JOURNAL OF PHYCOLOGY 2011; 47:1350-9. [PMID: 27020359 DOI: 10.1111/j.1529-8817.2011.01062.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cell-cell interaction in the eukaryote-prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth-promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae-bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single-cell microalgae.
Collapse
Affiliation(s)
- Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Schmid
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Rothballer
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Anton Hartmann
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| |
Collapse
|