Beattie L, Peltan A, Maroof A, Kirby A, Brown N, Coles M, Smith DF, Kaye PM. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.
PLoS Pathog 2010;
6:e1000805. [PMID:
20300603 PMCID:
PMC2837408 DOI:
10.1371/journal.ppat.1000805]
[Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/03/2010] [Indexed: 01/16/2023] Open
Abstract
Kupffer cells (KCs) represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.
Leishmania donovani is a protozoan parasite that causes severe disease in humans with associated pathology in the spleen and liver. In experimental models of L. donovani infection, the hepatic response to infection is characterised by the presence of a focal mononuclear cell-rich inflammatory response (a granuloma) surrounding cells infected with intracellular amastigotes. Granulomas provide focus to the ensuing immune response, helping to contain parasite dissemination and providing the major effector site responsible for parasites elimination from the liver. Although granulomas are believed to form around infected resident liver macrophages (Kupffer cells), the role of these cells in intra-granuloma antigen presentation is currently unknown. As CD8+ T cells have been shown to play an important role in hepatic resistance to L. donovani following natural infection, vaccination and during immunotherapy, we asked which cells within the granuloma microenvironment serve as targets for antigen recognition by effector CD8+ T cells. Here we provide evidence that the heavily infected mononuclear cell core of the granuloma is composed almost entirely of Kupffer cells, many having migrated from the surrounding sinusoids. Furthermore, by intra-vital 2-photon microscopy, we show that only Kupffer cells laden with intracellular amastigotes are able to form long-lasting antigen-specific interactions with CD8+ T cells within the granuloma microenvironment. These data have important implications for the understanding of how granulomas function to limit infection and may have important implications for the development of vaccines to Leishmania that are designed to induce CD8+ T cell responses.
Collapse